Azərbaycan  AzərbaycanБеларусь  БеларусьDanmark  DanmarkDeutschland  DeutschlandUnited States  United StatesEspaña  EspañaFrance  FranceIndonesia  IndonesiaItalia  ItaliaҚазақстан  ҚазақстанLietuva  LietuvaРоссия  Россияශ්‍රී ලංකාව  ශ්‍රී ලංකාවประเทศไทย  ประเทศไทยTürkiyə  TürkiyəУкраина  Украина
Soutien
www.aawiki.fr-fr.nina.az
  • Maison

Amphibiens batraciens Pour les articles homonymes voir Amphibia homonymie Amphibia Amphibiens de différents ordres de ga

Amphibiens

  • Page d'accueil
  • Amphibiens
Amphibiens
www.aawiki.fr-fr.nina.azhttps://www.aawiki.fr-fr.nina.az

Amphibiens, batraciens

image

Pour les articles homonymes, voir Amphibia (homonymie).

Amphibia
image
Amphibiens de différents ordres : (de gauche à droite et de haut en bas) un anoure (Litoria phyllochroa), un seymouriamorphe (Seymouria baylorensis), un urodèle (Notophthalmus viridescens) et un gymnophiones (Dermophis mexicanus).
Classification ITIS
Règne Animalia
Embranchement Chordata
Sous-embr. Vertebrata
Infra-embr. Gnathostomata
Super-classe Tetrapoda

Classe

Amphibia
Gray, 1825

Taxons de rang inférieur

  • Clade Batrachomorpha
    • † Temnospondyli
    • Lissamphibia (amphibiens modernes)
  • Clade Reptiliomorpha * (ancestral au amniotes)
    • † Lepospondyli
    • † Anthracosauria

Les amphibiens (Amphibia), anciennement batraciens, forment une classe de vertébrés tétrapodes. Ils sont aujourd'hui définis comme un groupe monophylétique issu de l'une des deux branches principales de tétrapodes, l'autre ayant conduit aux amniotes. La branche de la zoologie qui les étudie (ainsi que les « reptiles ») est l'herpétologie, plus précisément la batrachologie, du grec batrachos, grenouille, qui leur est spécialement consacrée.

Les amphibiens vivent dans une grande variété d’habitats mais la majorité des espèces affectionnent les écosystèmes terrestres, d’eau douce ou arboricoles. Les amphibiens débutent généralement leur vie sous la forme d’une larve aquatique, qui se métamorphose plus tard en forme adulte définitive, mais certaines espèces n’effectuent pas cette métamorphose, soit en restant larvaires toute leur vie et se reproduisant ainsi (néoténie), soit en prenant la forme adulte miniature avant éclosion. La larve a un mode de vie totalement aquatique et respire par le biais de branchies tandis que l’adulte est doté de poumons et respire à l’air libre. Les amphibiens utilisent leur peau comme surface respiratoire secondaire, et certaines espèces de petites salamandres et de grenouilles terrestres respirent même exclusivement par la peau, et sont dépourvues de poumons. Ils ont un certain nombre de ressemblances avec les reptiles, mais ces derniers sont des amniotes qui, comme les oiseaux et les mammifères, n’ont pas besoin d’eau pour se reproduire. Les amphibiens ont, pour leur reproduction et la santé de leur peau perméable, besoin d’eaux chimiquement non-polluées, ce qui en fait de bons indicateurs écologiques. Dans les dernières décennies, il y a eu un déclin spectaculaire de leurs populations à travers le monde, dû à la pollution et à la diffusion des mycoses.

Les premiers tétrapodomorphes sont apparus au Dévonien parmi des « poissons » sarcoptérygiens, munis de poumons et de nageoires osseuses, organes adaptés à l’exondation régulière et prolongée sur les estrans des estuaires, deltas et autres milieux paraliques. Les tétrapodes pré-amniotes se sont diversifiés et sont devenus le groupe dominant parmi les animaux terrestres au cours du Carbonifère, avant d’être progressivement supplantés à partir du Permien par les amniotes, dont l’essor a contribué à la disparition, au fil des extinctions de masse, de nombreuses lignées de tétrapodes archaïques. Seuls les ancêtres de la sous-classe des Lissamphibiens, plus petits et moins diversifiés, ont survécu jusqu’à nos jours.

Les trois ordres modernes d'amphibiens sont les anoures (grenouilles et crapauds), les urodèles (tritons et salamandres), et les gymnophiones (les cécilies). Le nombre total d'espèces connues d'amphibiens est d'environ 7 000, dont près de 90 % sont des grenouilles (à comparer avec les mammifères : environ 5000 espèces). Le plus petit amphibien (et plus petit vertébré terrestre) au monde est une grenouille de Nouvelle-Guinée, Paedophryne amauensis qui mesure seulement 7,7 mm. Le plus grand amphibien vivant est la Salamandre géante de Chine (Andrias davidianus) avec 1,8 m de long, toutefois bien en deçà des six m de Mastodonsaurus, espèce éteinte qui vivait durant le Permien, ou des sept m du Brachyopoïde d'Alweynskop au Lesotho, qui vivait à la fin du Trias et au début du Jurassique.

Selon la liste rouge de l'UICN publiée en 2019, 40 % des 8 100 espèces amphibiennes répertoriées sont en voie d’extinction.

Généralités

Parmi les vertébrés, la superclasse des tétrapodes est divisée en plusieurs classes, dont les squamates, les crocodiliens, les oiseaux et les mammifères, qui sont des amniotes, dont les œufs sont portés ou pondus par la femelle et sont protégés par plusieurs membranes, certaines imperméables. Comme leurs œufs ne possèdent pas ces membranes, les amphibiens ont besoin du milieu aquatique pour pondre et mener à bien leur reproduction, même si certaines espèces ont développé diverses stratégies pour protéger leurs larves, voire se passer du stade larvaire aquatique durant lequel elles sont vulnérables. Il y a accouplement en général, mais sans fécondation interne, le mâle déversant son sperme sur les œufs au moment où la femelle pond. Il existe cependant des exceptions comme la plupart des salamandres, des amphibiens de l'ordre des urodèles chez qui la femelle, après une fécondation interne, conserve les embryons et les larves dans ses voies génitales (cas de viviparité). On ne rencontre actuellement[C'est-à-dire ?] pas d'amphibiens dans les milieux marins, à l'exception de rares grenouilles vivant dans les eaux saumâtres des mangroves. Sur terre, les amphibiens préfèrent les habitats humides, car ils doivent éviter que leur peau ne se dessèche.

Le plus petit amphibien et vertébré dans le monde est une grenouille Microhylidae de Nouvelle-Guinée, Paedophryne amauensis, découverte en 2012. Elle mesure en moyenne 7,7 mm et fait partie d'un genre qui contient quatre des dix plus petites espèces de grenouilles au monde. Le plus grand amphibien vivant mesure lui jusqu'à 1,8 m de long. Il s'agit de la Salamandre géante de Chine (Andrias davidianus),, qui demeure bien plus petite que ses parents éloignées, dont l'un plus grand connus, Mastodonsaurus, un temnospondyle ressemblant à un crocodile et vivant au Europe, mesurant 6 m de long et ayant existé durant le Trias moyen.

Les amphibiens sont qualifiés d'animaux « à sang froid » car ils sont poïkilothermes, c'est-à-dire qu'ils ne peuvent pas réguler la température de leur corps, et sont donc dépendants des conditions thermiques extérieures. Comme les reptiles, leur thermorégulation est assurée par héliothermie ou thigmothermie. Leur métabolisme de base est faible et, par conséquent, leurs besoins alimentaires et énergétiques sont peu importants. Au stade adulte, ils ont des conduits lacrymaux et les paupières mobiles, et la plupart des espèces ont des oreilles qui peuvent détecter des vibrations dans l'air ou du sol. Ils ont une langue musculaire, qui est protruse dans de nombreuses espèces. Les amphibiens modernes ont des vertèbres complètement ossifiées et de véritables articulations. Leurs côtes sont généralement très courtes, voire fusionnées avec les vertèbres. Leur crâne est large et court, et souvent incomplètement ossifié. Leur peau contient peu de kératine et est dépourvue d'écailles, mis à part chez certaines cécilies. La peau contient de nombreuses glandes à mucus et chez certaines espèces des glandes produisant du poison. Le cœur des amphibiens a trois chambres, deux oreillettes et un ventricule. Ils ont une vessie et les déchets azotés sont excrétés principalement sous forme d'urée. La plupart des amphibiens pondent leurs œufs dans l'eau et ont des larves aquatiques qui se métamorphosent pour devenir des adultes terrestres. Les amphibiens respirent en aspirant l'air par leurs narines dans la région buccopharyngée, puis leurs narines sont obturées et l'air est envoyé dans les poumons à la suite de la contraction de la gorge. Ils complètent leur respiration par des échanges gazeux à travers leur peau fine, richement vascularisée et souvent couverte de mucus, qui permet la dissolution des gaz.

Les trois grands groupes d'amphibiens vivant actuellement[C'est-à-dire ?] sont assez différents, tant par leur mode de vie que par leur apparence.

Les anoures

image
Rainette aux yeux rouges (Agalychnis callidryas) avec ses membres bien adaptés pour grimper.
Article détaillé : Anoure.

L'ordre des Anoura (du grec ancien ἀν-, « sans », et οὐρά, « queue ») comprend les grenouilles et les crapauds. Ils ont généralement de longs membres postérieurs repliés sous leur corps, des pattes antérieures plus courtes, des orteils palmés sans griffes, pas de queue, de grands yeux et une peau glandulaire humide. On appelle communément grenouilles les membres de cet ordre qui ont la peau lisse, tandis que ceux avec une peau verruqueuse sont connus comme des crapauds. La différence entre grenouilles et crapauds n'est pas basée sur un caractère officiel taxonomique et il y a de nombreuses exceptions à cette règle. Les membres de la famille des Bufonidae sont connus comme les « vrais crapauds ». Les grenouilles peuvent mesurer plus de 30 centimètres comme la Grenouille de Goliath (Conraua goliath) en Afrique de l'Ouest, mais aussi être très petites comme Paedophryne amauensis et ses 7,7 millimètres, qui a été décrite pour la première en Papouasie-Nouvelle-Guinée en 2012, et qui est aussi le plus petit vertébré connu au monde. Bien que la plupart des espèces soient associées à des habitats humides, certaines se sont spécialisées pour vivre dans les arbres ou dans les déserts. Ainsi on trouve des anoures dans le monde entier à l'exception des régions polaires.

L'ordre des anoures est divisé en trois sous-ordres qui sont largement reconnus par la communauté scientifique, mais les relations entre certaines familles restent floues. Les futures études moléculaires devraient fournir de nouvelles informations sur leurs relations évolutives. Le sous-ordre des Archaeobatrachia comprend quatre familles de grenouilles primitives : les Ascaphidae, les Bombinatoridae, les Discoglossidae et les Leiopelmatidae, qui ont quelques caractères divergents et sont probablement paraphylétique par rapport aux autres lignées de grenouilles. Les six familles du sous-ordre des Mesobatrachia, plus avancé en matière d'évolution, sont les Megophryidae, les Pelobatidae, les Pelodytidae, les Scaphiopodidae, les Rhinophrynidae et les Pipidae exclusivement aquatiques. Ces familles ont des caractéristiques intermédiaires entre les deux autres sous-ordres. Le sous-ordre des Neobatrachia est de loin le plus vaste et comprend les autres familles de grenouilles modernes, comprenant notamment les espèces les plus communes. 96 % des plus de 5 000 espèces actuelles de grenouilles sont des Neobatrachia.

Les urodèles

Article détaillé : Urodèle.
image
Salamandre géante du Japon
(Andrias japonicus), une salamandre primitive

L'ordre des Caudata (du latin cauda signifiant « queue »), également appelés Urodela, est composé des salamandres et des tritons, sont très dépendants du milieu aquatique, elles ont un corps allongé, une longue queue et quatre petites pattes. Ces animaux ressemblent à des lézards, mais ils ne sont toutefois pas plus apparentés aux lézards qu'ils ne le sont aux mammifères. Les salamandres n'ont pas de griffes, ont une peau dépourvue d'écailles, lisse ou recouverte de tubercules, et une queue aplatie verticalement. Leur taille varie entre 20 mm pour Thorius pennatulus, espèce qui vit au Mexique et 1,8 m, taille de la Salamandre géante de Chine (Andrias davidianus). Les salamandres sont présentes dans tout la région Holarctique de l'hémisphère Nord. La famille des Plethodontidae peut aussi se rencontrer en Amérique centrale et en Amérique du Sud au nord du bassin de l'Amazone. Les membres de plusieurs familles de salamandres sont devenus néoténique, et ne terminent jamais leur métamorphose, ou conservent des caractéristiques larvaires une fois adultes,. La plupart des salamandres mesurent moins de 15 cm de long. Elles peuvent être terrestres et aquatiques, et de nombreuses espèces alternent entre ces deux habitats au cours de l'année. Sur terre, elles passent la majeure partie de la journée cachées sous une pierre, une branche tombée au sol ou dans la végétation dense, et sortent la nuit pour se nourrir de vers, d'insectes et d'autres invertébrés.

image
Triturus dobrogicus, un urodèle évolué.

Le sous-ordre des Cryptobranchoidea comprend les salamandres primitives. Un certain nombre de fossiles de cryptobranchides ont été trouvés, mais on ne connait que trois espèces existantes de nos jours, la Salamandre géante de Chine (Andrias davidianus), la Salamandre géante du Japon (Andrias japonicus) et le Ménopome (Cryptobranchus alleganiensis) en Amérique du Nord. Ces amphibiens de grande taille conservent plusieurs caractéristiques larvaires à leur stade adulte : les fentes des branchies sont présentes et les yeux n'ont pas de paupières. Ils se caractérisent par leur capacité à se nourrir par aspiration, en créant une dépression d'un côté ou l'autre de la mâchoire inférieure. Le mâle creuse le nid, incite la femelle à pondre ses œufs à l'intérieur, et les garde. En plus de respirer par leurs poumons, ils respirent par les nombreux plis de leur peau fine, qui disposent de vaisseaux capillaires proches de la surface.

Le sous-ordre des Salamandroidea est composé de salamandres plus évoluées. Elles diffèrent des cryptobranchides par leur os préarticulaire fusionné à la mâchoire inférieure, et par leur pratique de la fécondation interne. Chez les Salamandroidea, le mâle dépose un paquet de sperme, le spermatophore, et la femelle le ramasse et l'insère dans son cloaque où le sperme est stocké jusqu'à ce que les œufs soient pondus. La plus grande famille de ce groupe est celle des Plethodontidae, les salamandres sans poumons, qui comprend 60 % de toutes les espèces de salamandres. La famille des Salamandridae comprend les vraies salamandres et on nomme « tritons » les membres de la sous-famille Pleurodelinae.

Le troisième sous-ordre, celui des Sirenoidea, compte quatre espèces dans son unique famille des Sirenidae. Les membres de cet ordre sont des salamandres aquatiques ressemblant à des anguilles, dépourvues de membres postérieurs et aux membres antérieurs réduits. Certaines de leurs caractéristiques sont primitives tandis que d'autres sont plus évoluées. La fertilisation semble être externe car les mâles n'ont pas les glandes cloacales utilisées par les salamandrides pour produire les spermatophores et les femelles n'ont pas de spermathèques pour le stockage du sperme. Malgré cela, les œufs sont pondus un à un, un comportement peu propice à la fécondation externe.

Les gymnophiones

Article détaillé : Gymnophiona.
image
La cécilie sud-américaine Siphonops paulensis.

L'ordre des Gymnophiona (du grec gymnos signifiant « nu » et ophis signifiant « serpent »), également appelés Apoda (du latin an- signifiant « sans » et du grec poda signifiant « pattes »), comprend les cécilies. Ce sont de longs animaux cylindriques dépourvus de pattes, ressemblant superficiellement aux serpents et aux vers. Les adultes mesurent entre 8 et 75 cm de long, à l'exception notable de Caecilia thompsoni qui peut atteindre une longueur de 150 centimètres. La peau des cécilies présente un grand nombre de plis transversaux, et chez certaines espèces elle est recouverte de minuscules écailles dermiques. Elles ont des yeux rudimentaires recouverts d'une peau, et dont la fonction se limite probablement à discerner les différences d'intensité lumineuse. Elles ont également une paire de petits tentacules près de l’œil, qui peuvent s'étendre et possèdent des fonctions tactiles et olfactives. La plupart des cécilies vivent sous la terre dans des galeries creusées dans le sol humide, dans du bois en décomposition ou sous des débris végétaux, mais certains sont aquatiques. La plupart des espèces pondent leurs œufs sous la terre, et dès que les larves éclosent elles se dirigent vers le point d'eau le plus proche. D'autres espèces portent les œufs, et la métamorphose a lieu avant qu'ils n'éclosent. Enfin, de plus rares espèces donnent naissance à des jeunes qu'elles nourrissent avec des sécrétions glandulaires tandis qu'ils sont dans l'oviducte. On rencontre les cécilies dans les régions tropicales d'Afrique, d'Asie, d'Amérique centrale et d'Amérique du Sud.

Anatomie et physiologie

La peau

image
Les couleurs vives de Hyperolius viridiflavus indiquent que c'est une espèce toxique.

La structure tégumentaire de la peau des amphibiens comporte certaines caractéristiques communes avec celle des autres vertébrés terrestres. Ainsi, leur peau présente des couches externes fortement kératinisées, et renouvelées périodiquement à travers un processus de mue contrôlé par l'hypophyse et la thyroïde. Les verrues sont communes, notamment chez les crapauds. Contrairement aux mammifères et aux oiseaux dont la peau est renouvelée par petites plaques, les amphibiens muent en perdant l'intégralité de la couche externe de la peau en une seule fois, à intervalles réguliers. L'intervalle entre deux mues varie suivant l'espèce. Il leur arrive fréquemment de manger ensuite cette mue. Les cécilies diffèrent des autres amphibiens par leurs écailles dermiques intégrées dans le derme, entre les sillons de la peau. Ces écailles ont une vague ressemblance avec celles des poissons osseux. Les lézards et certaines grenouilles ont des plaques osseuses semblables au niveau du derme, mais il s'agit là d'un exemple de convergence évolutive, des structures similaires s'étant développées indépendamment dans diverses lignées de vertébrés.

La peau des amphibiens est perméable à l'eau. Des échanges gazeux peuvent avoir lieu à travers la peau, ce qui permet aux adultes de respirer sans remonter à la surface de l'eau et d'hiberner au fond des étangs ou des mares. Pour éviter que leur peau fine et fragile ne se dessèche, les amphibiens ont développé des glandes à mucus, principalement localisées sur la tête, le dos et la queue. Les sécrétions produites par celles-ci les aident à garder la peau humide. En outre, la plupart des espèces d'amphibiens ont des glandes qui sécrètent des substances désagréables ou toxiques. Certaines toxines produites par des amphibiens peuvent être mortelles pour les humains tandis que d'autres ont peu d'effet. Les principales glandes productrices de poison, les parotides, produisent une neurotoxine, la bufotoxine. Elles sont situées derrière les oreilles des crapauds, le long du dos des grenouilles, derrière les yeux des salamandres et sur la surface supérieure des cécilies.

La couleur de la peau des amphibiens dépend de trois couches de cellules pigmentaires appelées chromatophores. Ces trois couches de cellules comprennent les mélanophores (occupant la couche la plus profonde), les guanophores (formant une couche intermédiaire et contenant de nombreux granules, produisant une couleur bleu-vert) et les lipophores (jaunes, la couche la plus superficielle). La plupart des espèces adoptent des couleurs leur permettant de se fondre dans leur environnement. Certaines d'entre elles sont même capables de modifier leur coloration selon le milieu dans lequel elles évoluent, à la manière des caméléons mais de façon moins marquée. Ce changement de couleur est initié par des hormones sécrétées par l'hypophyse, à partir des informations fournies par les yeux. Contrairement aux poissons osseux, il n'y a pas de contrôle direct du système nerveux sur les cellules pigmentaires, et cela se traduit par un changement de couleur plus lent que chez les poissons. Une peau de couleur vive indique généralement que l'espèce est toxique et constitue un avertissement pour les prédateurs.

En 2017, des chercheurs de l'université de Buenos Aires ont découvert la première grenouille fluorescente (Hypsiboas punctatus), chose unique chez les amphibiens, alors qu'ils étaient en train d'étudier sa pigmentation. À la lumière du jour, cette grenouille arbore des couleurs vertes, jaunes ou rouges, mais éclairée par un faisceau ultraviolet, elle se met à briller intensément, d'une couleur bleu-vert. D'autre part, elle possède des molécules fluorescentes jamais encore observées chez des animaux. Celles-ci sont concentrées dans son tissu lymphatique, dans sa peau et dans ses sécrétions glandulaires.

Squelette et locomotion

Le squelette des amphibiens ressemble fortement à celui des autres tétrapodes. En effet ils ont tous quatre membres, sauf pour les cécilies et quelques espèces de salamandres aux membres réduits ou absents. Les os sont creux et légers. Le système musculo-squelettique est robuste pour lui permettre de soutenir la tête et le corps. La ceinture scapulaire est soutenue par des muscles, et la ceinture pelvienne, bien développée, est rattachée au squelette par une paire de côtes reliées au sacrum. L'ilion penche vers l'avant et le corps est maintenu près du sol, ce qui n'est pas le cas chez les mammifères.

image
Squelette d'un Crapaud cornu du Brésil (Ceratophrys cornuta)

Chez la plupart des amphibiens, la patte avant comporte quatre doigts, et la patte arrière cinq, mais aucun ne présente de griffes. Certaines espèces de salamandres ont moins de doigts et les Amphiuma, ressemblant à des anguilles, ont des pattes minuscules. Les Sirenoidea, des salamandres aquatiques, ont quant à elles des membres antérieurs trapus mais pas de membres postérieurs. Les cécilies n'ont pas de pattes. Elles progressent dans leurs galeries à la manière des vers de terre, par des contractions musculaires le long de leur corps. Sur la surface du sol ou dans l'eau, elles se déplacent en ondulant.

Chez les grenouilles, les pattes postérieures sont plus grandes que les pattes antérieures, trait particulièrement marqué chez les espèces qui se déplacent principalement en sautant ou en nageant. Les espèces qui se déplacent en marchant ont des membres postérieurs développés, et les fouisseurs ont pour la plupart des membres courts et un corps large. Les pieds peuvent présenter diverses adaptations suivant le mode de vie, comme des orteils palmés adaptés à la natation, de larges ventouses adhésives pour l'escalade et des tubercules kératinisés sur les pattes de derrière pour creuser (les grenouilles creusent généralement dans le sol en reculant). Chez la plupart des salamandres, les membres sont courts, ont plus ou moins la même longueur et sont perpendiculaires au corps. Lorsqu'elles marchent sur terre, la queue passe d'un côté à l'autre, et peut être utilisée comme balancier, notamment pour grimper. Dans leur démarche normale, elles avancent une patte après l'autre, de la même manière que leurs ancêtres les ostéichthyens. Certaines salamandres appartenant au genre Aneides et certains Plethodontidae grimpent aux arbres et ont de longs membres, de larges ventouses et une queue préhensile. Chez les salamandres aquatiques et les têtards de grenouilles, la queue a les nageoires dorsales et ventrales et se déplacent de droite à gauche, permettant à l'animal de se propulser. Les grenouilles adultes n'ont pas de queue et celle des cécilies est très courte.

Les salamandres peuvent utiliser leur queue pour se défendre et certaines espèces l'abandonnent derrière elles pour faire diversion, la queue continuant à se contracter, et s'échapper. On appelle ce comportement autotomie. C'est le cas de certaines espèces de Plethodontidae chez lesquelles la queue se détache facilement. La queue et les membres peuvent être régénérés. Par contre, les membres des grenouilles adultes ne se régénèrent pas, contrairement à ceux de leurs têtards.

Système circulatoire

image
Siphonops annulatus ressemble à un ver de terre.

Les amphibiens ont un stade larvaire et un stade adulte, avec des systèmes circulatoires bien distincts. Chez la larve, la circulation est similaire à celle d'un poisson, et le cœur composé de deux compartiments envoie le sang vers les branchies où il est oxygéné, avant qu'il ne traverse le reste du corps et revienne au cœur en ne formant qu'une seule boucle. Chez l'adulte, les amphibiens, et notamment les grenouilles, perdent leurs branchies et développent des poumons. Leur cœur se compose d'un ventricule unique et de deux oreillettes. Lorsque le ventricule se contracte, le sang désoxygéné est pompé à travers l'artère pulmonaire vers les poumons, puis les contractions continuent et envoie le sang oxygéné dans le reste du corps. Le mélange du sang oxygéné et du sang non oxygéné est minimisé par l'anatomie des chambres.

Les systèmes nerveux et sensoriel

Le système nerveux est semblable à celui des autres vertébrés, avec un cerveau central, une moelle épinière, et des nerfs dans tout le corps. Le cerveau des amphibiens est moins bien développé que celui des reptiles, des oiseaux et des mammifères, mais sa morphologie et son fonctionnement sont similaires à celui d'un poisson. Il se compose d'un télencéphale, d'un mésencéphale et d'un cervelet de tailles équivalentes. Le télencéphale reçoit les signaux sensoriels de l'odorat dans le lobe olfactif et de la vue dans le lobe optique, et il est en outre le centre de comportement et d'apprentissage. Le cervelet contrôle la coordination musculaire et le bulbe rachidien régule certaines fonctions des organes, y compris le rythme cardiaque et la respiration. Le cerveau envoie des signaux à travers la moelle épinière et les nerfs afin de réguler l'activité du reste du corps. La glande pinéale, connue chez l'Homme pour réguler le sommeil, produit les hormones impliquées dans l'hibernation et l'estivation des amphibiens.

Les têtards possèdent une ligne latérale, comme leurs ancêtres les poissons, mais elle a disparu chez les amphibiens terrestres adultes. Certaines cécilies possèdent des électrorécepteurs qui leur permettent de localiser les objets autour d'elles lorsqu'elles sont immergées dans l'eau. Les oreilles sont bien développées chez les grenouilles. Il n'y a pas d'oreille externe, mais un large tympan est situé juste derrière l’œil. Il vibre et le son est transmis par un seul os, l'étrier, à l'oreille interne. Seuls les sons à haute fréquence tels que les appels d'accouplement se font entendre de cette manière. Les bruits de plus basse fréquence peuvent être détectés par un autre mécanisme : des cellules ciliées spécialisées, appelées papilla amphibiorum situées dans l'oreille interne sont capables de déceler ces sons. Une autre caractéristique, propre aux grenouilles et aux salamandres, est le complexe attenant columelle-opercule de la capsule auditive qui permet aux animaux de ressentir les vibrations de l'air ou du sol. Les oreilles des salamandres et des cécilies sont moins développées que celles des grenouilles et ces espèces ne peuvent généralement pas communiquer par des sons.

Les yeux des têtards n'ont pas de paupières, mais ils subissent diverses évolutions au moment de la métamorphose : la cornée prend une forme de dôme, le cristallin s'aplatit et les paupières et les glandes et conduits associés apparaissent. Les yeux des adultes sont intermédiaires entre ceux des invertébrés et ceux des autres vertébrés plus évolués. Ils permettent la vision des couleurs et de la profondeur de champ. La rétine est composée de cellules en bâtonnet, sensibles à une large gamme de longueurs d'onde.

Système digestif et excréteur

image
Grenouille disséquée:1 Oreillette droite, 2 Poumons, 3 Aorte, 4 Grappe d’œufs, 5 Colon, 6 Oreillette gauche, 7 Ventricule, 8 Estomac, 9 Foie, 10 Vésicule biliaire, 11 Intestin grêle, 12 Cloaque

De nombreux amphibiens attrapent leurs proies en lançant sur elles leur longue langue collante, avant de les saisir avec leurs mâchoires. Certains avalent leur proie en avançant rapidement et à plusieurs reprises la tête vers l'avant, afin de faire progresser les aliments vers le fond de la bouche en se servant de leur inertie. La plupart des amphibiens avalent leur proie tout entière, sans mâcher, et ils possèdent donc un ventre volumineux pour pouvoir recevoir ces proies. L'œsophage est court, bordé de cils et couvert de mucus produit par les glandes de la bouche et du pharynx, ce qui facilite le transit de la nourriture vers l'estomac. Leur estomac produit de la chitinase, une enzyme qui permet de digérer la cuticule chitineuse des arthropodes.

Les amphibiens possèdent une vessie, un pancréas, un foie et une vésicule biliaire. Le foie est généralement de grande taille avec deux lobes. Comme il a pour fonction de stocker le glycogène et les graisses, sa taille varie d'une saison à l'autre selon que ces réserves sont en constitution ou utilisées. Le tissu adipeux est une autre réserve d'énergie pour les amphibiens, et on le trouve dans l'abdomen, sous la peau et, chez certaines salamandres, dans la queue.

Les amphibiens ont deux reins situés au niveau du dos, dans la partie supérieure de la cavité abdominale. Leur fonction est de filtrer le sang pour en extraire les déchets métaboliques et transporter l'urine par les uretères vers la vessie où elle est stockée avant d'être évacuée périodiquement par l'intermédiaire du cloaque. Les larves, tout comme les adultes des espèces les plus aquatiques excrètent l'azote sous forme d'ammoniac dans de grandes quantités d'urine diluée, tandis que les espèces terrestres, qui doivent économiser l'eau, excrètent l'azote sous forme d'urée, un produit moins toxique qui peut être concentré et stocké. Certaines grenouilles arboricoles ayant un accès limité à l'eau excrètent leurs déchets métaboliques sous forme d'acide urique.

Système respiratoire

image
L'Axolotl (Ambystoma mexicanum) conserve ses branchies sous sa forme adulte.

Les larves se distinguent surtout par leur respiration branchiale alors que les adultes ont une respiration pulmonaire.

Comparés à ceux des amniotes, les poumons des amphibiens sont primitifs, avec peu de cloisons internes et de grandes alvéoles, et par conséquent le taux de diffusion de l'oxygène dans le sang est relativement lent. L'approvisionnement des poumons en air est réalisé par aspiration par voie buccale. La plupart des amphibiens, cependant, sont en mesure de réaliser des échanges gazeux dans l'eau ou dans l'air par l'intermédiaire de leur peau. Pour que cette respiration cutanée fonctionne, la surface de la peau est très vascularisée et doit rester humide pour permettre à l'oxygène de se diffuser à un taux suffisamment élevé. Comme la concentration d'oxygène dans l'eau augmente à la fois lorsque la température est basse et que le débit est élevé, les amphibiens aquatiques peuvent, lorsque ces conditions sont réunies, s'appuyer principalement sur la respiration cutanée, comme le font la grenouille du lac Titicaca (Telmatobius culeus) et la salamandre Ménopome. À l'air libre, où l'oxygène est plus concentré, certaines petites espèces peuvent compter uniquement sur les échanges gazeux cutanés pour respirer, le cas le plus célèbre étant celui des salamandres de la famille des Plethodontidae, qui n'ont ni poumons, ni branchies. Les amphibiens présentent tous des branchies lors de leur stade larvaire, et certaines salamandres aquatiques les conservent sous leur forme adulte.

Reproduction

image
Mâle Litoria xanthomera saisissant la femelle pendant l'amplexus.

Pour se reproduire, les amphibiens ont besoin d'eau douce, même si certains pondent leurs œufs sur la terre, ayant développé différents moyens pour les conserver à un niveau d'humidité suffisant. Quelques-uns (par exemple Fejervarya raja) peuvent vivre en eau saumâtre, mais aucun amphibien n'est réellement marin. On a cependant observé quelques cas particuliers de populations d'amphibiens colonisant des eaux salées. Ce fut le cas en mer Noire avec l'hybride naturel Pelophylax esculentus en 2010.

Plusieurs centaines d'espèces de grenouille issues d'une même radiation évolutive (dont notamment les Eleutherodactylus, les du Pacifique, les Microhylidae d'Océanie et diverses espèces de grenouilles tropicales) n'ont pas besoin d'eau pour se reproduire. La quasi-totalité de ces grenouilles vivent dans les forêts tropicales humides et elles ne possèdent pas de stade larvaire : de leurs œufs éclosent directement des versions miniatures de l'adulte, qui passent par le stade de têtard alors qu'elles sont encore dans l'œuf. La réussite de leur reproduction dépend alors de la quantité de précipitations et du fait que celles-ci coïncident avec le moment de la reproduction.

Dans les tropiques, de nombreux amphibiens se reproduisent tout au long de l'année. Dans les régions tempérées, la reproduction est saisonnière, et a généralement lieu au printemps, car elle est déclenchée par l'augmentation de la longueur du jour, la hausse des températures ou d'importantes précipitations. Des expériences ont montré l'importance de la température pour déclencher la reproduction, mais dans les régions arides, c'est souvent une tempête qui la provoque. Chez les anoures, les mâles arrivent généralement avant les femelles sur les sites de reproduction, et leurs chants stimulent alors l'ovulation des femelles et la production d'hormones sexuelles chez les mâles immatures.

Chez les cécilies, la fécondation est interne, le mâle introduisant son , dans le cloaque de la femelle. Les glandes de Müller situées à l'intérieur du cloaque des mâles sécrètent un fluide qui ressemble à celui produit par les glandes de la prostate des mammifères et qui permet de transporter et nourrir le sperme. La fertilisation a probablement lieu dans l'oviducte.

La majorité des salamandres pratiquent également la fécondation interne. Pour la plupart d'entre elles, le mâle dépose un spermatophore (petit paquet de sperme) sur le dessus d'un cône gélatineux, sur le sol ou dans l'eau. La femelle saisit le paquet de sperme avec les lèvres de son cloaque et le pousse dans l'orifice. Les spermatozoïdes atteignent alors la spermathèque située au sommet du cloaque et ils y restent jusqu'à l'ovulation qui peut avoir lieu plusieurs mois plus tard. Les parades nuptiales et les méthodes de transfert du spermatophore varient selon les espèces. Dans certains cas, le spermatophore peut être placé directement dans le cloaque de la femelle alors que chez d'autres la femelle peut être guidée vers le spermatophore ou retenue par une étreinte appelée amplexus. Certaines salamandres primitives appartenant aux familles des Sirenidae, des Hynobiidae et des Cryptobranchidae pratiquent la fertilisation externe de la même manière que les grenouilles, la femelle pondant ses œufs dans l'eau et le mâle libérant son sperme sur la masse d'œufs.

À quelques exceptions près, les grenouilles utilisent la fécondation externe. Le mâle saisit la femelle avec ses pattes avant soit au niveau des pattes avant soit au niveau des pattes arrière, voire dans le cas de Epipedobates tricolor autour du cou. Ils restent dans cette position, leurs cloaques placés non loin l'un de l'autre, et tandis que la femelle pond les œufs, le mâle les recouvre de sa semence. Des callosités rugueuses sur les pattes du mâle permettent d'avoir plus d'adhérence pour conserver cette position suffisamment longtemps. Chez le crapaud accoucheur, Alytes obstetricans, le mâle recueille et conserve la masse d'œufs sur ses cuisses et la base de son dos, formant une sorte de panier avec ses pattes arrière. Oophaga granulifera constitue une exception, puisque le mâle et la femelle placent bien leurs cloaques à proximité, mais sont orientés vers des directions opposées, et relâchent les œufs et le sperme en même temps. Ascaphus truei utilise la fécondation interne. Seuls les mâles disposent d'une « queue » qui constitue un prolongement du cloaque et est utilisée pour fertiliser la femelle. Cette grenouille vit dans les rivières à courant rapide et la fécondation interne évite que les spermatozoïdes soient emportés par le courant avant que la fécondation n'ait lieu. Le sperme peut être conservé dans des tubes de stockage connectés à l'oviducte jusqu'au printemps suivant.

La durée de la période de reproduction est variable suivant les espèces. En règle générale, elle est assez longue, les mâles arrivant progressivement sur les sites de reproduction, où les premiers s'installent sur un territoire et chantent, tandis que d'autres attendent qu'un territoire soit libéré. Petit à petit, les femelles arrivent, choisissent un partenaire et pondent leurs œufs. À leur départ le territoire change de mains, et ainsi de suite jusqu'à ce que plus aucune femelle ne vienne sur les sites de reproduction, marquant la fin de celle-ci. D'autres espèces ont une période de reproduction beaucoup plus courte, avec une activité plus marquée. Il s'agit notamment des espèces fouisseuses vivant dans des régions arides, qui émergent après de fortes pluies et se rassemblent sur un site de reproduction. Les animaux sont attirés par le chant du premier mâle à trouver un endroit approprié, comme une flaque qui se forme au même endroit à chaque saison des pluies. Les grenouilles assemblées peuvent appeler à l'unisson et une activité frénétique s'ensuit, les mâles se bousculant pour s'accoupler avec les femelles, généralement moins nombreuses.

Cycle de vie

La plupart des amphibiens se métamorphosent, un processus de changement morphologique significatif après la naissance. Au cours du développement classique des amphibiens, les œufs sont pondus dans l'eau et les larves sont adaptées à un mode de vie aquatique. Les grenouilles, les crapauds et les salamandres sortent de l'œuf sous forme de larves munies de branchies externes. La métamorphose des amphibiens est régulée par la concentration dans le sang de deux hormones antagonistes, la thyroxine, qui stimule la métamorphose, et la prolactine, qui contrecarre l'effet de la thyroxine. Les évènements de la métamorphose sont induits par le passage de la concentration de ses hormones au-delà de valeurs seuils dans les différents tissus. Comme le développement embryonnaire se fait surtout en dehors du corps des parents, il est soumis à de nombreuses adaptations découlant des conditions environnementales. Ainsi, les têtards ont des crêtes cornées au lieu de dents et des extensions de la peau plutôt que des nageoires. Ils disposent aussi d'un organe sensoriel, la ligne latérale, similaire à celui des poissons. Après la métamorphose, ces organes deviennent inutiles et vont disparaître petit à petit à la suite de la dégénérescence des cellules, appelée apoptose. La variété des adaptations liées aux spécificités de l'environnement chez les amphibiens est très importantes, et de nombreuses découvertes sont encore à faire.

Œufs

image
Œufs d'amphibiens entourés de gélatine.

L’œuf des amphibiens se caractérise par la présence d'une couverture gélatineuse transparente sécrétée par les oviductes et composée de et des glycosaminoglycanes. Cette capsule est perméable à l'eau et aux gaz, et sa taille augmente considérablement à mesure qu'elle absorbe de l'eau. L'ovule est d'abord maintenu solidement à l'intérieur, mais dans les œufs fécondés, la couche la plus interne se liquéfie et permet à l'embryon de se déplacer librement. C'est également le cas pour les œufs de salamandre, même quand ils ne sont pas encore fécondés. Les œufs de certaines salamandres et ceux des grenouilles contiennent une algue verte unicellulaire. Celle-ci pénètre dans l'enveloppe gelée après que les œufs sont pondus et peut améliorer l'apport d'oxygène à l'embryon grâce à sa photosynthèse. Elle semble à la fois accélérer le développement des larves et réduire leur mortalité. La plupart des œufs contiennent de la mélanine, un pigment qui augmente leur température grâce à l'absorption de la lumière et les protège contre le rayonnement ultraviolet. Les cécilies, certaines salamandres et les grenouilles de la famille des Plethodontidae qui pondent leurs œufs sous terre ont des œufs non pigmentés. Chez la Grenouille des bois (Rana sylvatica), l'intérieur de l'amas globulaire de l’œuf a une température supérieure de jusqu'à 6 °C à celle de son environnement, dans la partie la plus septentrionale de son aire de répartition.

Les œufs peuvent être déposés individuellement ou par plusieurs, voire en importants amas d'œufs sphériques, pouvant former des radeaux ou de longues chaînes. Chez les cécilies terrestres, les œufs sont pondus en grappes, dans des terriers près des ruisseaux. La salamandre amphibie Ensatina attache des grappes similaires à tiges ou des racines sous l'eau. Eleutherodactylus planirostris pond ses œufs en petits amas dans le sol où ils se développent en environ deux semaines pour donner directement des grenouilles juvéniles, qui ne passent pas par le stade de larves. Physalaemus pustulosus construit un nid flottant en mousse pour protéger ses œufs. Elle commence par bâtir le radeau, puis pond ses œufs au centre et les recouvre d'un bouchon en mousse. La mousse a des propriétés anti-microbiennes. Elle est créée par émulsion de protéines et de lectines sécrétées par la femelle,. Le crapaud Pipa pipa incube les œufs enfoncés dans le dos de la femelle.

Larves

image
Premiers stades du développement de l'embryon de la Grenouille rousse (Rana temporaria).

Les œufs des amphibiens sont généralement pondus dans l'eau et les larves qui en éclosent complètent leur développement dans l'eau et se transforment plus tard en adultes, aquatiques ou terrestres. Chez certaines espèces de grenouilles et la plupart des salamandres sans poumons (Pléthodontidés), il n'y a pas de stade larvaire apparent. Les larves se développent dans les œufs et émergent sous la forme d'adultes miniatures. De nombreuses cécilies et certains autres amphibiens pondent leurs œufs sur terre, et la larve nouvellement éclose se tortille jusqu'à un point d'eau ou y est transportée. Certaines cécilies, la Salamandre noire (Salamandra atra) et certaines espèces de Nectophrynoides sont vivipares. Leurs larves se nourrissent de sécrétions glandulaires et se développent dans l'oviducte de la femelle, souvent pendant de longues périodes. D'autres amphibiens, en dehors des cécilies, sont ovovivipares. Les œufs sont conservés à l'intérieur ou sur le corps de la mère, mais les larves se nourrissent du vitellus de l’œuf, sans recevoir aucune nourriture de l'adulte. Les larves émergent à différents stades de leur croissance, que ce soit avant ou après la métamorphose, selon l'espèce. Les crapauds du genre Nectophrynoides présentent l'ensemble de ces modèles de développement parmi sa douzaine de représentants.

Anoures

Les larves des anoures sont connues sous le nom de têtards. Ceux-ci ont une forme généralement ovale et longue, une queue aplatie à la verticale et munie de nageoires. Les larves sont normalement entièrement aquatiques, mais les têtards de certaines espèces telles que Nannophrys ceylonensis sont semi-terrestres et vivent parmi les rochers humides. Les têtards ont un squelette cartilagineux, des branchies pour la respiration (branchies externes, puis branchies internes au fur et à mesure de leur développement), une ligne latérale et une grande queue qu'ils utilisent pour nager. À l'éclosion, les têtards développent rapidement des poches branchiales qui couvrent les branchies. Les poumons se développent tôt et sont utilisés comme organes respiratoires accessoires, les têtards remontant à la surface de l'eau pour respirer à l'air libre. Certaines espèces achèvent leur développement à l'intérieur de l'œuf et éclosent sous la forme de petites grenouilles. Dans ce cas, les animaux juste éclos ne disposent pas de branchies mais de régions de la peau très spécialisées par lesquelles la respiration a lieu. Alors que les têtards n'ont pas de véritables dents, chez la plupart des espèces les mâchoires présentent de longues rangées parallèles de petites structures kératinisées appelées keradonts, entourés d'un bec corné. Les pattes avant se forment sous les sacs branchiaux et les pattes arrière deviennent visibles quelques jours plus tard. Les têtards sont généralement herbivores, se nourrissant principalement d'algues, y compris de diatomées filtrées dans l'eau par les branchies. Ils sont aussi détritivores, et ils remuent les sédiments au fond de l'eau pour en dégager de petits fragments de matières comestibles. Ils ont un intestin suffisamment long, en forme de spirale, pour digérer ces aliments. Certaines espèces sont carnivores dès le stade larvaire, et le têtard mange des insectes, d'autres têtards plus petits et des poissons. Les têtards de la Rainette de Cuba (Osteopilus septentrionalis) peuvent pratiquer le cannibalisme, les jeunes têtards attaquant un têtard plus grand alors qu'il est en pleine métamorphose.

image
Étapes successives du développement du têtard du Crapaud commun (Bufo bufo), se terminant par la métamorphose.

Lors de la métamorphose, on observe des changements rapides et radicaux dans la morphologie et le mode de vie des grenouilles. La bouche en forme de spirale avec ses dents cornées se résorbe avec l'intestin en spirale. L'animal développe une grande mâchoire, et ses branchies et leurs sacs branchiaux disparaissent. Les yeux et les pattes se développent rapidement, et une langue apparait. Le système nerveux évolue en conséquence, et on observe le développement de la vision stéréoscopique et la perte de la ligne latérale. Tout cela peut se produire en l'intervalle d'une journée environ. Quelques jours plus tard, la queue se résorbe.

Urodèles

image
Larve de Salamandre à longs doigts (Ambystoma macrodactylum).
image
Larve de Triton alpestre (Ichthyosaura alpestris).

À l'éclosion, la larve de salamandre présente généralement des yeux dépourvus de paupières, des dents aux mâchoires inférieure et supérieure, trois paires de branchies externes plumeuses, un corps un peu aplati latéralement et une longue queue avec des nageoires dorsales et ventrales. Les membres antérieurs peuvent être partiellement développés et les membres postérieurs sont rudimentaires chez les espèces vivant en eau stagnante, mais peuvent-être un peu plus développés chez les espèces qui se reproduisent dans de l'eau en mouvement. Les larves des espèces se reproduisant en étang ont souvent une paire d'équilibreurs, des éléments en forme de tiges placés de chaque côté de la tête qui évitent aux branchies d'être obstruées par des sédiments. Les larves de certains membres des genres des Ambystoma et des Dicamptodon ne se métamorphosent jamais complètement, et conservent des caractéristiques larvaires. La Salamandre foncée (Ambystoma gracile) est dans ce cas, et en fonction de facteurs environnementaux, elle peut rester en permanence à l'état larvaire, phénomène appelé néoténie, ou se transformer en adulte. Dans les deux cas, l'espèce est en mesure de se reproduire. La néoténie se produit lorsque la croissance de l'animal est très faible et est généralement liée à des conditions défavorables telles qu'une température basse de l'eau, qui peuvent altérer la réponse des tissus à la thyroxine. Le manque de nourriture, le manque d'oligo-éléments et la concurrence importante des congénères peuvent également inhiber la métamorphose. La Salamandre tigrée (Ambystoma tigrinum) se comporte parfois aussi de cette façon. La Salamandre tigrée adulte est terrestre, mais la larve est aquatique et est capable de se reproduire tout en restant dans son état larvaire. Lorsque les conditions sont particulièrement inhospitalière sur terre, cette reproduction des larves peut permettre la survie d'une population qui, autrement, se serait éteinte. Il y a une quinzaine d'espèces de salamandres complètement néoténiques, dont les espèces des genres Necturus, Proteus et Amphiuma, et on compte de nombreux exemples d'espèces néoténiques facultatives qui adoptent cette stratégie dans des conditions environnementales particulières.

Les salamandres sans poumons de la famille des Plethodontidae sont terrestres et pondent un petit nombre d’œufs non pigmentés parmi les feuilles mortes humides. Chaque œuf possède un important vitellus et la larve s'en nourrit et se développe à l'intérieur de l'œuf, émergeant après sa métamorphose sous la forme d'une salamandre juvénile. La salamandre femelle couve souvent les œufs. Dans le genre Ensatina, la femelle a été observée appuyant sa gorge contre eux, les massant avec une sécrétion de mucus.

Chez les tritons et les salamandres, la métamorphose est moins spectaculaire que chez les grenouilles. En effet, les larves sont carnivores, comme les adultes, et peu de changements sont donc nécessaires pour leur système digestif. Leurs poumons sont fonctionnels dès l'éclosion, mais les larves ne les utilisent pas autant que le font les têtards. Leurs branchies ne sont jamais couvertes par de sacs branchiaux et se résorbent juste avant que les animaux ne sortent de l'eau. Lors de la métamorphose, les nageoires de leur queue se réduisent, voire disparaissent, leurs fentes branchiales se ferment, leur peau s'épaissit, des paupières apparaissent et on observe également des changements au niveau de la dentition et de la structure de la langue. Les salamandres sont très vulnérables au moment de la métamorphose car leur vitesse de nage est réduite et leur grande queue est encombrante sur terre. Les salamandres adultes ont souvent une phase aquatique au printemps et en été, et une phase terrestre en hiver. Pour s'adapter successivement à ces deux modes de vie, elles subissent quelques modifications hormonales : la prolactine est produite pour se préparer à la vie aquatique quand la thyroxine est associée à la vie sur terre. Les branchies externes ne sont pas utilisées lors des phases aquatiques, car celles-ci sont complètement résorbées lorsque les animaux sortent de l'eau pour la première fois.

Cécilies

image
La cécilie Ichthyophis glutinosus avec ses œufs et un embryon.

La plupart des cécilies terrestres qui pondent des œufs le font dans des terriers ou des endroits humides près de plans d'eau. Le développement du jeune Ichthyophis glutinosus, une espèce originaire du Sri Lanka, a été étudié en détail. Les larves ressemblent à des anguilles à leur éclosion et se trainent jusqu'à un point d'eau. Elles ont trois paires de branchies plumeuses rouges, une tête émoussée avec deux yeux rudimentaires, une ligne latérale et une queue courte avec des nageoires. Elles nagent en faisant onduler leur corps. Ces larves, surtout actives la nuit, perdent leurs branchies et commencent alors à sortir sur la terre ferme. La métamorphose est progressive. À l'âge d'environ dix mois, cette cécilie a une tête pointue avec des tentacules sensorielles près de la bouche et a perdu ses yeux, sa ligne latérale et sa queue. La peau s'épaissit, les écailles qui lui sont intégrées se développent et le corps se divise en segments. L'animal se construit alors un terrier et vit exclusivement sur terre.

La majorité des espèces de cécilies sont vivipares. Typhlonectes compressicauda, une espèce d'Amérique du Sud, en est un exemple typique. Jusqu'à neuf larves peuvent se développer dans l'oviducte simultanément. Elles sont allongées et ont des branchies en forme de sac, de petits yeux et des dents spécialisées pour racler. Dans un premier temps, ils se nourrissent à partir de leur vitellus, mais au fur et à mesure que cette source de nourriture diminue, ils commencent à râper les cellules épithéliales ciliées qui tapissent l'oviducte. Cela stimule la sécrétion de substances riches en lipides et mucoprotéines dont ils se nourrissent par la paroi de l'oviducte. Les larves peuvent voir leur longueur multipliée par six, et mesurent alors les deux cinquièmes de la longueur de leur mère. Lorsqu'elles sortent de l'oviducte, elles ont subi leur métamorphose, ont perdu leurs yeux et leurs branchies, ont développé une peau plus épaisse et des tentacules sur la bouche, et leurs dents ont disparu. Des dents permanentes vont croître peu après la naissance,.

Siphonops annulatus a développé une adaptation unique pour se reproduire. La progéniture se nourrit d'une couche de peau spécialement développée à cette fin par l'adulte, dans un phénomène connu sous le nom de dermatophagie maternelle. Les larves se nourrissent ensemble et dévorent la couche cellulaire en approximativement sept minutes, et attendent ensuite trois jours qu'elle se régénère. Pendant ce temps ils se nourrissent de fluides produits par le cloaque maternel.

Les soins parentaux

image
Mâle Colostethus panamensis transportant ses têtards sur son dos.

Les soins parentaux chez les amphibiens sont mal connus, mais, en général, plus le nombre d'œufs pondus est important, moins il est probable que les parents se préoccupent de leur progéniture. Néanmoins, on estime que pour environ 20 % des espèces d'amphibiens, un ou les deux parents jouent un rôle dans l'élevage des jeunes. Les espèces qui se reproduisent dans les petits plans d'eau ou dans des habitats spécialisés ont tendance à développer des comportements plus évolués dans les soins donnés aux jeunes.

La plupart des salamandres vivant dans les bois pondent leurs œufs à terre sous du bois mort ou une pierre. C'est le cas de Desmognathus welteri, une salamandre qui couve ses œufs et les protège contre les prédateurs tandis que les jeunes se nourrissent du vitellus. Lorsqu'ils sont pleinement opérationnels, les jeunes se frayent un chemin hors du nid et se dispersent. Chez le Ménopome, une salamandre primitive, le mâle creuse un nid sous l'eau et encourage les femelles à y pondre. Le mâle protège ensuite le site pendant les deux ou trois mois qui précèdent l'éclosion des œufs, et assure leur approvisionnement en oxygène en agitant l'eau autour du nid.

image
Mâle Alyte accoucheur (Alytes obstetricans) transportant des œufs.

Le mâle Colostethus subpunctatus, une petite grenouille, protège ses œufs qui sont cachés sous une pierre ou des feuilles mortes. Quand les œufs éclosent, le mâle transporte les têtards sur son dos, sur lequel ils tiennent grâce à une sécrétion de mucus, vers une mare où il se plonge et laisse les têtards tomber. Le mâle Alyte accoucheur (Alytes obstetricans) attache des grappes d'œufs autour de ses cuisses et les porte ainsi pendant environ huit semaines. Il les garde humides, et quand ils sont prêts à éclore il se rend dans un étang ou un fossé et libère les têtards. Chez les grenouilles du genre Rheobatrachus, la femelle élevait les larves dans son estomac après avoir ingurgité les œufs ou les petits juste éclos. Toutefois, on n'a jamais pu observer ce phénomène avant que ces espèces ne soient éteintes. Les têtards sécrétaient une hormone qui inhibait la digestion chez la mère pendant qu'ils se développaient en consommant leur large vitellus. Assa darlingtoni pond ses œufs sur le sol. Quand ils éclosent, le mâle porte les têtards dans des sortes de poches situées au niveau de ses pattes de derrière. Le Crapaud du Surinam (Pipa pipa) est une espèce aquatique qui élève ses petits dans les pores sur son dos où ils demeurent jusqu'à la métamorphose. Oophaga granulifera est une espèce caractéristique des grenouilles arboricoles venimeuses de la famille des Dendrobatidae. Ses œufs sont pondus sur le sol de la forêt et quand ils éclosent, les têtards sont emportés un à un sur le dos d'un adulte vers une crevasse remplie d'eau, à la base d'une feuille ou au cœur de la rosette de broméliacées. La femelle se rend dans les sites où se développent les jeunes et y dépose régulièrement des œufs non fécondés qui sont consommés par les têtards.

Alimentation

image
Salamandre foncée (Ambystoma gracile) mangeant un ver.

À quelques exceptions près, les amphibiens adultes sont carnivores, se nourrissant de presque tout ce qui bouge qu'ils sont en mesure d'avaler. Leur régime alimentaire se compose essentiellement de petites proies peu rapides, comme les coléoptères, les chenilles, les vers de terre et les araignées. Les espèces du genre Siren ingèrent souvent des plantes aquatiques en même temps que les invertébrés dont ils se nourrissent et la grenouille arboricole brésilienne Xenohyla truncata inclut une grande quantité de fruits dans son régime alimentaire. Le crapaud mexicain Rhinophrynus dorsalis possède une langue spécialement adaptée pour attraper les fourmis et les termites.

Les amphibiens repèrent leurs proies la plupart du temps par la vue, même par faible luminosité. Ce sont notamment les mouvements de la proie qui déclenchent l'attaque de la grenouille. Ainsi, on peut capturer des grenouilles avec un morceau de tissu rouge accroché à un hameçon et on a retrouvé dans l'estomac de grenouilles vertes (Lithobates clamitans) des graines d'orme qu'elles avaient vu flotter. Les crapauds, les salamandres et les cécilies peuvent également utiliser leur odorat pour détecter leurs proies. L'odorat demeure toutefois secondaire, des salamandres ont été observées immobiles près d'une proie sans la sentir, ne la repérant que lorsqu'elle bouge. Les amphibiens troglodytes chassent principalement grâce à leur odorat.

Les amphibiens avalent leur nourriture entière, la mâchant parfois légèrement pour l'engloutir. Ils ont de petites dents articulées sur des pédicelles, une caractéristique propre aux amphibiens. La base et le sommet de ces dents sont composés de dentine, et sont séparés par une couche non calcifié. Par ailleurs ces dents sont remplacées régulièrement. Les salamandres, les grenouilles et quelques cécilies ont une ou deux rangées de dents dans les deux mâchoires, mais certaines grenouilles (les espèces du genre Rana) n'ont pas de dents à la mâchoire inférieure, et les crapauds géants (genre Bufo) sont eux dépourvus de dentition. Chez de nombreux amphibiens, on trouve aussi des dents vomériennes, attachées à un os au niveau de la voûte du palais.

image
Grenouille comestible (Pelophylax esculentus) faisant acte de cannibalisme.

La Salamandre tigrée (Ambystoma tigrinum) adopte un comportement typique des grenouilles et des salamandres, se cachant sous le couvert en attendant le passage d'un invertébré imprudent. D'autres amphibiens, tels que les crapauds du genre Bufo, recherchent activement leurs proies, tandis que la Grenouille cornue d'Argentine (Ceratophrys ornata) attire ses proies en levant ses pattes de derrière au-dessus de son dos et faisant vibrer ses orteils jaunes. Parmi les grenouilles vivant dans les litières de feuilles au Panama, les grenouilles qui chassent activement ont une bouche étroite et sont minces, arborent souvent de couleurs vives et sont toxiques, tandis que celle qui attendent en embuscade ont une large bouche et sont plus grosses et bien camouflées. Les cécilies ne peuvent pas lancer leur langue, mais attrapent leurs proies grâce à leurs dents pointues et orientées vers l'arrière. Les mouvements de la mâchoire et ceux de la proie qui se débat contribuent à diriger celle-ci petit à petit vers l'estomac de l'animal, qui se retire dans son terrier pour finir de l'avaler entière.

Les larves de grenouilles juste écloses se nourrissent du vitellus. Lorsque celui-ci est épuisé, elles se nourrissent de bactéries, d'algues, de détritus et de fragments de plantes submergées. L'eau est aspirée par la bouche et filtrée au niveau des branchies où les particules fines sont piégées dans le mucus. Certains ont des pièces buccales spécialisées composées d'un bec corné bordé par plusieurs rangées de dents labiales. Ils grattent et mordent la nourriture de toutes sortes et remuent les sédiments au fond de l'eau, filtrant les grosses particules avec leurs papilles situées autour de la bouche. Certains, comme ceux des crapauds de la famille des Scaphiopodidae, ont de puissantes mâchoires et sont carnivores, voire cannibales.

Cri

image
Mâle Dendropsophus microcephalus gonflant sa gorge en chantant.

Les cris des cécilies et des salamandres sont limités à des grincements, des grognements doux ou des sifflements et n'ont pas été beaucoup étudiés. Les cécilies émettent un cliquetis qui est peut-être utilisé pour s'orienter, à la façon des chauves-souris, ou constitue une forme de communication. La plupart des salamandres sont considérées comme n'émettant aucun bruit, mais la salamandre Dicamptodon ensatus a des cordes vocales et peut produire un cliquetis ou aboyer. Certaines espèces de salamandre poussent un petit cri aigu ou glapissent lorsqu'elles sont attaquées.

Les grenouilles sont beaucoup plus bruyantes, surtout pendant la saison de reproduction lorsque les mâles utilisent leur voix pour attirer les femelles. La présence d'une espèce particulière dans une région est parfois plus facilement identifiée par son cri caractéristique que par la vue de l'animal lui-même. Chez la plupart des espèces, le son est produit par expulsion de l'air des poumons à travers les cordes vocales vers un ou plusieurs sacs gulaires situés au niveau de la gorge ou dans le coin de la bouche. Ce sac peut se distendre comme un ballon et agit comme un résonateur, en aidant à transmettre le son vers l'atmosphère ou l'eau lorsque l'animal est immergé. Le cri le mieux connu est le bruyant chant du mâle, qui vise à attirer les femelles mais également décourager les autres mâles de pénétrer sur son territoire. Ce chant devient plus discret lors de la séduction d'une femelle s'approchant, et plus agressif si un intrus mâle approche. Ce chant risque d'attirer les prédateurs et implique une forte dépense d'énergie. La femelle chante en réponse à l'appel du mâle. Quand une grenouille est attaquée, elle émet un cri de détresse ou de peur. Osteopilus septentrionalis, une rainette généralement nocturne, chante lorsqu'il pleut pendant la journée.

Comportement territorial

On connait mal le comportement territorial des cécilies, mais certaines grenouilles et les salamandres défendent leurs domaines vitaux, où elles s'alimentent et se reproduisent. Ce sont principalement les mâles qui présentent un tel comportement, mais chez certaines espèces les femelles et les jeunes sont impliqués. Chez de nombreuses espèces de grenouilles, les femelles sont plus grandes que les mâles, mais ce n'est pour les espèces où les mâles défendent activement leur territoire. Certains d'entre eux possèdent des adaptations spécifiques telles que des dents plus grandes ou des épines sur la poitrine, les bras ou les doigts.

image
La Salamandre cendrée (Plethodon cinereus) défend son territoire face aux intrus.

Les salamandres défendent leur territoire en adoptant une posture agressive et en attaquant l'intrus si nécessaire, en le poursuivant, le chassant et parfois le mordant, ce qui peut parfois engendrer la perte de sa queue. Le comportement de la Salamandre cendrée (Plethodon cinereus) a été étudié tout particulièrement. Ainsi, suivant l'étude, 91 % des individus de cette espèce marqués et repris par la suite étaient situés à moins d'un mètre de leur lieu de capture initiale. Une proportion semblable d'animaux, qui ont été déplacés à une distance de 30 mètres de leur lieu de capture, ont retrouvé leur chemin pour retourner à leur base. Les salamandres laissent des marques odorantes autour de leurs territoires qui mesurent en moyenne de 0,16 à 0,33 mètre carré et sont habités par un couple. Il s'agit de dissuader l'intrusion d'intrus et de délimiter les frontières entre territoires. Une grande partie du comportement de ces salamandres est stéréotypé et semble ne faire appel à aucun contact réel entre individus. Il lui arrive de prendre une posture agressive en soulevant son corps au-dessus du sol et regardant fixement son adversaire qui, souvent, se détourne docilement. Si l'intrus persiste, la salamandre mord l'intrus, au niveau de la queue ou à la région nasolabiale.

Chez les grenouilles, le mâle a un comportement territorial souvent observé dans des lieux de reproduction. Son chant est à la fois l'annonce de sa présence sur le territoire pour d'éventuels concurrents, mais aussi un appel aux femelles. En général, un chant plus grave correspond à une grenouille plus grosse, ce qui peut être suffisant pour empêcher l'intrusion de petits mâles. Ce chant demande beaucoup d'énergie, et le détenteur d'un territoire s'épuise donc, ce qui peut le handicaper en cas de lutte face à un concurrent. Généralement les mâles ont tendance à tolérer les détenteurs de territoires voisins, mais s'attaquent vigoureusement aux intrus inconnus. Les détenteurs de territoires ont l’« avantage du terrain » en cas de lutte, et remportent généralement les luttes entre des grenouilles de tailles similaires. Si les menaces sont insuffisantes, les grenouilles s'empoignent poitrine contre poitrine. Les grenouilles se battent en se bousculant, dégonflant le sac gulaire de leur adversaire, le saisissant par la tête, lui sautant sur le dos, le mordant ou l'éclaboussant.

Mécanismes de défense

image
Crapaud buffle (Rhinella marina) avec des glandes empoisonnées derrière les yeux.

Les amphibiens ont un corps mou et la peau fine, et comme ils sont démunis de griffes, de carapace ou d'épines, ils semblent relativement impuissants. Néanmoins, ils ont développé divers mécanismes de défense pour se protéger. La première défense des salamandres et des grenouilles est le mucus qu'elles produisent. Il maintient leur peau humide et les rend glissantes et difficiles à saisir. La sécrétion est souvent collante et peut avoir une odeur désagréable ou être toxique. Des serpents ont été observés bâillant et ouvrant la gueule en tentant d'avaler des Xenopus laevis, offrant aux grenouilles une occasion de s'échapper,. Les cécilies ont été peu étudiées à ce sujet, mais Typhlonectes compressicauda produit un mucus toxique mortel pour les poissons prédateurs, comme l'a montré une expérimentation au Brésil. Chez certaines salamandres, la peau est toxique. Le Triton rugueux (Taricha granulosa) d'Amérique du Nord et d'autres membres du même genre produisent la neurotoxine tétrodotoxine (TTX), la substance non protéique la plus toxique connue, presque identique à celle produite par le poisson-globe. La manipulation de ces tritons n'est pas dangereuse, mais l'ingestion d'une portion même infime de la peau est mortelle. Les poissons, les grenouilles, les reptiles, les oiseaux et les mammifères ont tous été révélés sensibles à ce poison,. Les seuls prédateurs qui tolèrent le poison sont certaines populations de Couleuvre rayée (Thamnophis sirtalis). Dans les lieux où ce serpent et le triton coexistent, les serpents ont développé une immunité génétique et ils se nourrissent des amphibiens sans risque. Certaines grenouilles et les crapauds sont toxiques, les principales glandes à venin étant situées sur le côté du cou et sous les verrues du dos. Ces régions sont celles susceptibles d'être attaquées par un prédateur en priorité, et leurs sécrétions peut donner un goût désagréable ou provoquer divers symptômes physiques ou neurologiques. Au total, plus de 200 toxines ont été isolées parmi les espèces d'amphibiens qui ont été étudiées.

image
La Salamandre tachetée (Salamandra salamandra), une espèce toxique, revêt des couleurs bien caractéristiques.
image
Le Phyllobate terrible, Phyllobates terribilis, peut-être l'une des espèces animale les plus toxiques au monde, est endémique de Colombie.

Les espèces vénéneuses revêtent souvent des couleurs vives pour avertir les prédateurs potentiels de leur toxicité. Ces couleurs sont généralement le rouge ou le jaune combiné avec le noir, la Salamandre tachetée (Salamandra salamandra) en est un exemple. Une fois qu'un prédateur a eu affaire à l'un d'eux, il lui est facile de se rappeler sa coloration et il se ravisera la prochaine fois qu'il rencontrera un animal semblable. Chez certaines espèces comme les Crapauds sonneurs (genre Bombina), la coloration d'avertissement est placée sur le ventre et ces animaux adoptent une pose défensive en cas d'attaque, présentant leurs couleurs vives au prédateur. La grenouille Allobates zaparo n'est pas toxique, mais imite l'apparence d'autres espèces toxiques partageant son aire de répartition, une stratégie qui peut tromper les prédateurs.

De nombreux amphibiens sont nocturnes et se cachent pendant la journée, évitant ainsi des prédateurs diurnes qui chassent à vue. D'autres amphibiens utilisent le camouflage pour éviter d'être détectés. Ils adoptent des colorations diverses comme le brun tacheté, le gris et l'olive et se fondent dans le paysage environnant. Certaines salamandres adoptent une posture défensive face à un prédateur potentiel comme la Grande musaraigne (Blarina brevicauda). Elles tordent leur corps et font fouetter leur queue, ce qui rend difficile pour le prédateur d'éviter le contact avec leurs glandes productrices de poison. Quelques salamandres pratiquent l'autotomie, perdant leur queue lorsqu'elles sont attaquées, sacrifiant cette partie du corps pour leur permettre de s'échapper. La queue peut alors présenter un rétrécissement à sa base pour lui permettre d'être facilement détachée. Elle se régénère par la suite, mais au prix d'une importante dépense en énergie pour l'animal.

Certaines grenouilles et les crapauds se gonflent pour paraître plus imposants, et certains crapauds du genre Pelobates crient et sautent vers le prédateur pour l'impressionner et le repousser. Les salamandres géantes du genre Andrias, ainsi que certaines grenouilles de la sous-famille des Ceratophryinae et du genre des Pyxicephalus possèdent des dents pointues et sont capables de mordre leur adversaire jusqu'au sang. La salamandre Desmognathus quadramaculatus peut mordre un serpent Thamnophis sirtalis deux ou trois fois plus grand qu'elle au niveau de la tête et réussit souvent à s'échapper.

Phylogénie

image
Évolution des vertébrés selon un diagramme axial représentant les cinq grandes classes (poissons, amphibiens, reptiles, oiseaux et mammifères). La largeur des axes indique le nombre de familles dans chaque classe (les téléostéens, poissons à squelette complètement osseux et à nageoires rayonnantes, représentent 99,8 % des espèces de poissons, et près de la moitié des espèces de vertébrés). En classification phylogénétique, seuls les oiseaux et les mammifères sont des groupes monophylétiques.

L'apparition des amphibiens

Les premiers tétrapodomorphes apparaissent par la terrestrialisation d'un poisson sarcoptérygien au cours du Dévonien, il y a au moins 370 millions d'années. Les nageoires d'un poisson sarcoptérygien apparenté aux dipneustes modernes évoluent pour devenir semblables à des pattes, munies de doigts, leur permettant de ramper sur les fonds marins. Certains de ces poissons développent des poumons primitifs pour les aider à respirer à l'air libre dans les eaux stagnantes des marais du Dévonien, très peu pourvues en oxygène. Ils peuvent également utiliser leurs nageoires puissantes pour se hisser hors de l'eau si les circonstances l'exigent. Finalement, leurs nageoires osseuses finissent d'évoluer pour former de véritables pattes, que l'on retrouve par la suite chez l'ensemble des tétrapodes (aujourd'hui définis comme étant le groupe-couronne des espèces actuelles), dont les amphibiens modernes, les reptiles, les oiseaux et les mammifères. Même s'ils sont capables de ramper sur la terre, beaucoup de ces « poissons » préhistoriques passent le plus clair de leur temps dans l'eau ; s'ils ont commencé à développer des poumons, il respirent encore principalement par les branchies. Les précurseurs des tétrapodes sont les stégocéphales. Leurs traces ont été découvertes notamment sur la côte est du Groenland, dans les couches fossilifères datées du Dévonien supérieur. Ils constituent un échelon intermédiaire de l'évolution, car ils réunissent à la fois des caractéristiques des poissons ostéichthyens et des amphibiens. Comme les amphibiens actuels, ils possèdent quatre membres puissants et un cou, mais une queue à nageoires et un crâne très similaire à celui des poissons sarcoptérygiens comme Eusthenopteron. Les stégocéphales figurent probablement dans l'ascendance des tous les tétrapodes modernes.

image
Diplocaulus, un lepospondyle du Permien, était majoritairement aquatique.

Les tétrapodes ont développé peu à peu un certain nombre d'adaptations leur permettant de rester hors de l'eau pendant de longues périodes. Leurs poumons se sont améliorés et leur squelette est devenu de plus en plus robuste, pour mieux supporter la gravité lorsqu'ils étaient sur terre. Ils se sont dotés de « mains » et de « pieds » avec cinq doigts ou plus ; leur peau est devenue capable de retenir les fluides corporels et de résister au dessèchement. L'os des poissons, situé dans la région de l'os hyoïde, derrière les branchies, a vu sa taille se réduire et est petit à petit devenu l'étrier de l'oreille des amphibiens, une adaptation nécessaire à l'audition sur la terre ferme. Les amphibiens ont par ailleurs des points communs avec les poissons téléostéens, comme la structure multi-pliée des dents et la paire d'os supra-occipital à l'arrière de la tête, ces caractéristiques n'ayant été observées chez nulle autre espèce dans le règne animal.

À la fin du Dévonien (il y a 360 millions d'années), les mers, les fleuves et les lacs grouillent de vie. La surface terrestre est toutefois encore peu pourvue en vertébrés, même si les stégocéphales peuvent brièvement vivre hors de l'eau. On pense qu'ils sortent de l'eau grâce à leurs membres antérieurs, traînant leurs arrière-train d'une manière similaire à l'éléphant de mer. Au début du Carbonifère (il y a entre 360 et 345 millions d'années), le climat devient chaud et humide. De vastes marécages se développent avec des mousses, des fougères, des prêles et des calamites. Des arthropodes à respiration aérienne ont déjà investi les continents et s'y sont fortement propagés, fournissant une source de nourriture pour les tétrapodes carnivores, qui commencent alors à s'adapter à l'environnement terrestre. Les amphibiens et les reptiliomorphes sont alors au sommet de la chaîne alimentaire, détenant la niche écologique actuellement[C'est-à-dire ?] occupée par les crocodiliens. Pourvus de membres et capable de respirer de l'air, la plupart ont encore un long corps effilé et une queue puissante. Les tétrapodes primitifs sont les premiers prédateurs terrestres, atteignant parfois plusieurs mètres de longueur, se nourrissant des gros insectes et de certains poissons.

image
Les membres robustes du temnospondyle Eryops peuvent soutenir son corps sur la terre ferme.

Les amphibiens développent de nouveaux moyens de locomotion. Dans l'eau, les mouvements latéraux de leur queue leur permettait de se propulser vers l'avant, mais sur la terre ferme, des mécanismes tout à fait différents sont nécessaires. Leur colonne vertébrale, leurs membres et leur musculature doivent être suffisamment robustes pour que les animaux puissent se déplacer et s'alimenter sur la terre ferme. Les adultes ont développé de nouveaux systèmes sensoriels qui leur permettent de recevoir les stimuli extérieurs à l'air libre, aux dépens de leur ligne latérale. Ils développent également de nouvelles méthodes de régulation leur température corporelle malgré les fluctuations de la température ambiante. Leur peau, exposée désormais à des rayons ultraviolets nocifs qui étaient absorbés par l'eau, devient une couverture plus protectrice, capable d'éviter de trop fortes déperditions d'eau. Ils ont encore besoin de retourner à l'eau pour pondre leurs œufs dépourvus de coquille, particularité qui caractérise toujours les amphibiens modernes, qui conservent un stade larvaire aquatique avec une respiration par branchies, comme leurs ancêtres poissons. À la fin du Carbonifère, le développement de l'œuf amniotique empêche l'embryon en développement de se dessécher, ce qui a permis aux premiers reptiles de se reproduire sur la terre ferme et a conduit à leur domination à partir du Permien.

image
Triadobatrachus massinoti, une proto-grenouille de Madagascar du Triassique supérieur, restitution par le paléoartiste Pavel Řiha.

Au cours du Trias (250 à 200 millions d'années avant notre ère), les reptiles supplantent les amphibiens, ce qui conduit à une réduction de la taille de ces derniers, et surtout à leur moindre importance dans la biosphère. Selon les fossiles, Lissamphibia, qui comprend tous les amphibiens modernes et est la seule lignée survivante, aurait dérivé des groupes disparus des Temnospondyli et Lepospondyli entre la fin du Carbonifère et le début du Trias. La relative rareté des fossiles empêche une datation plus précise, mais une étude moléculaire de 2010, fondée sur plusieurs gènes, suggère que les amphibiens modernes seraient apparus vers la fin du Carbonifère ou au tout début du Permien.

Frontières du groupe des amphibiens

Le nom de classe « Amphibia » et le terme « amphibien » sont dérivés de l'adjectif amphibie, qui provient lui-même du grec ancien ἀμφίβιος (amphíbios) signifiant « qui vit dans deux éléments ». Classiquement, cette classe regroupe tous les vertébrés tétrapodes qui ne sont pas des amniotes mais possédant un stade larvaire ; les amphibiens sont le grade évolutif des tétrapodes dont les embryons ne sont pas protégés par un amnios. En taxinomie classique, ce groupe est divisé en trois sous-classes, dont deux sont éteintes :

  • † sous-classe Lepospondyli (peut-être paraphylétique) — du Carbonifère et début du Permien
  • † sous-classe Labyrinthodontia (paraphylétique) — du Paléozoïque et début du Mésozoïque
    • † ordre Ichthyostegalia (paraphylétique)
    • † ordre Temnospondyli (peut-être paraphylétique)
    • † ordre Reptiliomorpha (paraphylétique)
  • sous-classe Lissamphibia
    • † ordre Allocaudata Fox and Naylor, 1982 — Albanerpetontidae, famille aux espèces proches des grenouilles et salamandres
    • ordre Anura Fischer von Waldheim, 1813 — du Jurassique à l'ère actuelle : 6 200 espèces actuelles de crapauds et grenouilles
    • ordre Caudata Fischer von Waldheim, 1813 — du Jurassique à l'ère actuelle : près de 650 espèces actuelles de tritons et salamandres
    • ordre Gymnophiona Müller, 1832 — du Jurassique à l'ère actuelle : un peu moins de 200 espèces actuelles de cécilies

La phylogénie a fait tomber en désuétude le groupe des Labyrinthodontia, qui s'est avéré paraphylétique et sans caractère commun à tous ses membres à l'exception de caractéristiques primitives. Les relations entre les différents groupes sont cependant difficiles à élucider sans fossiles clés. Pour certains auteurs, les lissamphibiens sont nichés au sein des Temnospondyli. Pour d'autres, comme Laurin, ce dernier est extérieur aux tétrapodes et il faut alors définir le groupe des amphibiens comme incluant les animaux plus proches des lissamphibiens que des amniotes, c'est-à-dire comprenant le groupe paraphylétique des Lépospondyles ainsi que les amphibiens actuels, les Lissamphibiens : si l'ancêtre commun des amphibiens et des amniotes était inclus dans les Amphibia, celui-ci deviendrait un groupe paraphylétique.

Deux des phylogénies en opposition présentées chez Wells (2007)
Phylogénie partielle des tétrapodes traditionnelle Phylogénie partielle des tétrapodes selon Laurin et Reisz (1997), controversée
  • Ichthyostega
  • Ichthyostega
Les groupes marqués d'une étoile (*) correspondent au groupe paraphylétique des Lépospondyles.

Origine des amphibiens actuels

Le groupe particulier comprenant l'ancêtre de tous les amphibiens actuels et ses descendants est appelé Lissamphibia. La phylogénie des amphibiens du Paléozoïque est incertaine, et les Lissamphibia pourraient possiblement être placés dans d'autres groupes, éteints, comme les Temnospondyli (classiquement placés parmi les Labyrinthodontia) ou les Lepospondyli ; certaines études les placent même aux côtés des amniotes. Tout cela fait que la classification phylogénétique a enlevé des Amphibia de la taxinomie linnéenne un certain nombre de tétrapodes aux allures d'amphibiens primitifs du Dévonien et du Carbonifère.

Les origines des trois principaux groupes d'amphibiens et leurs liens de parenté sont sujets à débat. Une étude sur la phylogénie de ces animaux de 2005, basée sur l'analyse moléculaire d'ADNr, suggère que les salamandres et cécilies sont plus étroitement liées entre elles qu'elles ne le sont aux grenouilles. Il apparaît également que la scission entre les trois groupes a eu lieu au cours du Mésozoïque ou à la fin du Paléozoïque (il y a environ 250 millions d'années), avant l'éclatement de la Pangée et peu de temps après leur divergence avec les poissons à nageoires lobées. La brièveté de cette période, et la rapidité avec laquelle le rayonnement des espèces a eu lieu, permettrait d'expliquer la relative rareté des fossiles d'amphibiens primitifs. Il existe d'importantes lacunes dans les fossiles retrouvés, mais la découverte de Gerobatrachus, une proto-grenouille du début du Permien découverte au Texas en 1995 et décrite en 2008, présentant de nombreuses caractéristiques communes avec les grenouilles modernes a fourni un chaînon manquant. L'analyse moléculaire suggère que la divergence entre grenouilles et salamandres a eu lieu beaucoup plus tôt que les preuves paléontologiques ne l'indiquent. Cependant, sa position est débattue.

Les travaux utilisant l'horloge moléculaire de ces groupes ont obtenu des résultats assez variés. Ils laissent à penser que la séparation entre gymnophiones et batraciens au sens strict du terme (groupe incluant urodèles et anoures) date du Dévonien supérieur,, du Carbonifére supérieur, ou même du Permien inférieur. Le fossile le plus ancien qui appartient peut-être à ce groupe date du Permien inférieur, mais sa position systématique est débattue. Les plus anciens fossiles dont les affinités avec les amphibiens actuels ne sont pas contestées sont Triadobatrachus et Czatkobatrachus, qui datent du Trias inférieur (environ 250 millions d'années).

Phylogénie partielle des Amphibia
selon Cannatella (Tolweb, 2007) :
  • Amphibia
    • Batrachia
      • Salientia = Anura (grenouilles et crapauds)
        + autres groupes proches

La sous-classe des Lissamphibia forme probablement un clade et regroupe les trois ordres d'amphibiens actuels — les Anura (les grenouilles et crapauds), les Caudata (ou « Urodela », les salamandres et tritons) et les Gymnophiona (ou « Apoda », les cécilies) — ainsi que d'autres groupes éteints qui ne font pas partie d'un ordre particulier — certains Salientia primitifs comme Triadobatrachus ou Czatkobatrachus, la famille des Albanerpetontidae qui est fortement apparentée aux Gymnophiona. Il a été suggeré que les Caudata aient émergé séparément des deux autres ordres depuis un ancêtre aux allures de Temnospondyli, ou même que les Gymnophiona soient le groupe-frère des Reptiliomorpha, et donc des amniotes.

Bien que l'on connaisse plusieurs anciens fossiles de proto-grenouilles arborant des caractères primitifs, le plus ancien anoure « vrai » est Prosalirus bitis, du Jurassique inférieur, trouvé dans la formation de Kayenta, en Arizona. La plus ancienne cécilie connue est une autre espèce du Jurassique inférieur et également trouvée en Arizona, Eocaecilia micropodia. Le plus ancien Salamandroidea connu est Beiyanerpeton jianpingensis, date du Jurassique supérieur et a été trouvée dans le nord-est de la Chine.

Diversité actuelle

Une étude de 2007 menée par Alford, Richards et McDonald estime le nombre total des amphibiens entre 8 000 et 10 000 espèces, précisant que bon nombre d'espèces ne sont pas encore découvertes. Ainsi au début les années 1990, plus de 100 espèces de grenouilles arboricoles de la famille des rhacophoridés ont été découvertes sur l'ile de Sri Lanka. Ceci est d'autant plus étonnant que bon nombre d'espèces décrites au XIXe siècle semble avoir disparu. Si l'on connaît alors 5 000 espèces de grenouilles, les estimations de ces chercheurs indiquent qu'un millier d'espèces sont encore inconnues. 80 % des espèces connues vivent dans les régions tropicales, l'Amérique du Sud étant le foyer principal de cette biodiversité. Alford, Richards et McDonald soulignent également que des plus de 500 espèces de salamandres connues, un grand nombre vit en Amérique du Nord ; la famille des pléthodontidés, qui se trouve en Amérique du Nord et du Sud, rassemble plus de la moitié des salamandres connues.

Diversité des amphibiens
Ordre Familles Genres Espèces
Anoures 54 434 6 200
Caudata 9 65 652
Gymnophiona 10 34 192
Total 73 533 7 044

Le nombre d'espèces actuelles de chaque groupe dépend de la classification taxinomique suivie. Deux principales existent pour le groupe des amphibiens. La première est celle suivie par AmphibiaWeb, site géré par l'Université de Californie (Berkeley) et la seconde celle maintenue par l'herpétologiste Darrel Frost du muséum américain d'histoire naturelle, disponible sur la base de données en ligne Amphibian Species of the World. Selon Frost on dénombre en tout plus de 7 000 espèces d'amphibiens actuels (version 5.6 de janvier 2013), dont les anoures représentent près de 90 %. Les principaux groupes taxinomiques sont ainsi répartis :

Déclin

image
Bufo periglenes, le crapaud doré de Monteverde, Costa Rica fut parmi les premières victimes du déclin des amphibiens. Autrefois abondante, l'espèce n'a pas été revue depuis 1989.
Article détaillé : Déclin des populations d'amphibiens.

Des baisses spectaculaires des populations d'amphibiens, dont des extinctions de masse localisées, ont été enregistrées depuis la fin des années 1980 un peu partout dans le monde, et le déclin des amphibiens est perçu comme étant l'une des menaces les plus graves pour la biodiversité mondiale. En 2006, on recensait 4 035 espèces d'amphibiens dépendant de l'eau à un moment donné au cours de leur cycle de vie. Parmi celles-ci, 1 356 (33,6 %) ont été considérées comme menacées, et ce chiffre est peut-être sous-estimé car il exclut 1 427 espèces pour lesquelles il n'y avait pas suffisamment de données pour évaluer leur situation. Un certain nombre de causes sont impliquées, comme notamment la destruction et la modification de l'habitat de ces animaux, la pollution, les espèces introduites, le changement climatique, les polluants perturbateurs du système endocrinien, la destruction de la couche d'ozone (le rayonnement ultraviolet est particulièrement dommageable pour la peau, les yeux et les œufs d'amphibiens), et des maladies comme la chytridiomycose. Ce déclin massif est même observé dans des zones isolées (forêt tropicale) ou peu cultivées et montagneuses en Europe (par exemple Suisse où 9 espèces sont sur la Liste rouge classées comme en danger critique d'extinction). Toutefois, bon nombre des causes de déclin des amphibiens sont encore mal comprises, et elles sont un sujet de débat en cours.

image
On pensait que Discoglossus nigriventer avait disparu avant de redécouvrir cette espèce en 2011.

Avec leurs besoins complexes en matière de reproduction et leur peau perméable, les amphibiens sont souvent considérés comme de bons indicateurs écologiques. Dans de nombreux écosystèmes terrestres, ils constituent une des plus grandes parties de la biomasse des vertébrés. Toute baisse du nombre d'amphibiens aura un impact sur les habitudes de prédation d'autres espèces qui pourraient être impactées. La perte d'espèces carnivores situées près du sommet de la chaîne alimentaire peut bouleverser l'équilibre d'un écosystème délicat et entraîner une augmentation spectaculaire des espèces opportunistes. Au Moyen-Orient, une demande croissante en cuisses de grenouilles pour la consommation humaine et la collecte importante de certains d'entre eux a conduit à une augmentation du nombre de moustiques. Les prédateurs qui se nourrissent d'amphibiens sont affectés par ce déclin. En Californie, la Couleuvre de l'Ouest (Thamnophis elegans) est essentiellement aquatique et dépend fortement de deux espèces d'anoures qui sont en déclin, le crapaud Bufo canorus et la grenouille Rana muscosa, et l'avenir de ce serpent est donc lui aussi remis en question. Si le serpent devenait rare, cela pourrait affecter les populations d'oiseaux de proie et d'autres prédateurs qui s'en nourrissent. Pendant ce temps, dans les étangs et les lacs, moins de grenouilles signifie moins de têtards. Ceux-ci jouent normalement un rôle important dans le contrôle de la croissance des algues et des détritus qui s'accumulent dans les sédiments au fond de l'eau. Une réduction du nombre de têtards peut conduire à une prolifération d'algues, ce qui entraîne l'épuisement de l'oxygène dans l'eau lorsque les algues se décomposent. Les invertébrés aquatiques et les poissons sont alors menacés et il y aurait des conséquences écologiques imprévisibles.

Une stratégie globale pour endiguer ce déclin a été mise en place en 2005 sous la forme d'un plan d'action pour la conservation des amphibiens. Développé par plus de quatre-vingt des plus grands experts dans le domaine, cet appel recensait des actions qui seraient nécessaires pour limiter le déclin des amphibiens et les extinctions au cours des cinq années suivantes et en estimait le coût. L'Amphibian Specialist Group de l'Union mondiale pour la nature (UICN) est le fer de lance des efforts pour mettre en œuvre une stratégie globale mondiale pour la conservation des amphibiens. Amphibian Ark est un organisme qui a été créé pour mettre en œuvre les recommandations de conservation ex-situ de ce plan, et cet organisme travaille avec les zoos et les aquariums du monde entier, pour les encourager à créer des colonies d'amphibiens menacés et en assurer ainsi la préservation au moins en captivité. Parmi ses projets on note aussi la tentative de sauvetage des amphibiens de Panama qui s'appuie sur les efforts de conservation en vigueur au Panama pour répondre à l'échelle nationale à la menace de la chytridiomycose.

Notes et références

  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Amphibian » (voir la liste des auteurs).
  1. ↑ a et b(en) D.C. Blackburn et D.B. Wake, « Class Amphibia Gray, 1825. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness », Zootaxa, vol. 3148,‎ 2011, p. 39–55 (lire en ligne)
  2. Sébastien Steyer, La Terre avant les dinosaures, éd. Belin, 2009, p. 94-95.
  3. « En Colombie, un labo contre les amphibiens mal acquis », sur Libération.fr, 23 décembre 2019
  4. (en) Michel Laurin, « Terrestrial Vertebrates », sur Tree of Life Web Project, 2011(consulté le 16 septembre 2012)
  5. (en) Michel Laurin et Jacques A. Gauthier, « Amniota », sur Tree of Life Web Project, 2012(consulté le 16 septembre 2012)
  6. ↑ a b c et dDorit 1991, p. 843-859
  7. (en) James L. Sumich et John F. Morrissey, Introduction to the Biology of Marine Life, Jones & Bartlett Learning, 2004, 449 p. (ISBN 978-0-7637-3313-1, lire en ligne), p. 171
  8. « Le plus petit vertébré du monde est… une grenouille », Le Point.fr,‎ 12 janvier 2012(lire en ligne).
  9. (en) Eric N. Rittmeyer, Allen Allison, Michael C. Gründler, Derrick K. Thompson et Christopher C. Austin, « Ecological guild evolution and the discovery of the world's smallest vertebrate », PLoS ONE, vol. 7, no 1,‎ 2012, e29797 (PMID 22253785, PMCID 3256195, DOI 10.1371/journal.pone.0029797)
  10. « Quel est le plus grand amphibien actuel », sur Futura-science, 25 septembre 2010(consulté le 29 janvier 2014).
  11. (en) Brent Nguyen et John Cavagnaro, « Amphibian Facts », AmphibiaWeb, juillet 2012(consulté le 11 septembre 2012).
  12. R.R. Schoch, « Comparative osteology of Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen) », Stuttgarter Beiträge zur Naturkunde Serie B, vol. 278,‎ 1999, p. 1–175 (lire en ligne)
  13. Roland Bauchot, Cassian Bon et Patrick David, Serpents, Éditions Artemis, 2005, p. 76.
  14. Stebbins 1995, p. 24-25.
  15. ↑ a b et cStebbins 1995, p. 3.
  16. (en) David Cannatella et Anna Graybeal, « Bufonidae, True Toads », sur Tree of Life Web Project, 2008(consulté le 12 janvier 2012)
  17. (en) « Frog fun facts », American Museum of Natural History, 12 janvier 2010(consulté le 29 août 2012).
  18. (en) David Challenger, « World's smallest frog discovered in Papua New Guinea », sur CNN.com, 12 janvier 2012(consulté le 29 août 2012).
  19. ↑ a b c d e f et g(en) Nicholas Arnold et Denys Ovenden, Reptiles and Amphibians of Britain and Europe, Harper Collins Publishers, 2002, 13–18 p. (ISBN 978-0-00-219318-4).
  20. (en) J. Faivovich, C.F.B. Haddad, P.C.A. Garcia, D.R. Frost, J.A. Campbell et W.C. Wheeler, « Systematic review of the frog family Hylidae, with special reference to Hylinae: Phylogenetic analysis and revision », Bulletin of the American Museum of Natural History, vol. 294,‎ 2005, p. 1–240 (DOI 10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2).
  21. ↑ a et b(en) L.S. Ford et D.C. Cannatella, « The major clades of frogs », Herpetological Monographs, vol. 7,‎ 1993, p. 94–117 (DOI 10.2307/1466954).
  22. (en) Diego San Mauro, Miguel Vences, Marina Alcobendas, Rafael Zardoya et Axel Meyer, « Initial diversification of living amphibians predated the breakup of Pangaea », American Naturalist, vol. 165, no 5,‎ 2005, p. 590–599 (PMID 15795855, DOI 10.1086/429523).
  23. (en) A. Larson et W. Dimmick, « Phylogenetic relationships of the salamander families: an analysis of the congruence among morphological and molecular characters », Herpetological Monographs, vol. 7, no 7,‎ 1993, p. 77–93 (DOI 10.2307/1466953, JSTOR 1466953).
  24. Losange2008, p. 9
  25. (en) David Baum, « Trait Evolution on a Phylogenetic Tree: Relatedness, Similarity, and the Myth of Evolutionary Advancement », Nature Education, vol. 1,‎ 2008, p. 191 (lire en ligne).
  26. (en) David B. Wake, « Thorius pennatulus », AmphibiaWeb, 8 novembre 2000(consulté le 25 août 2012).
  27. (en) Max Sparreboom, « Andrias davidianus Chinese giant salamander », AmphibiaWeb, 7 février 2000(consulté le 1er décembre 2012)
  28. Dorit 1991, p. 852.
  29. Rüdiger Wehner et Walter Gehring (trad. de l'allemand), Biologie et physiologie animales : bases moléculaires, cellulaires, anatomiques et fonctionnelles, Paris/Bruxelles/s.l., De Boeck Université, 1999, 844 p. (ISBN 2-7445-0009-7 et 9782744500091), p. 216.
  30. (en) Heather Heying, « Cryptobranchidae », sur Animal Diversity Web, University of Michigan, 2003(consulté le 25 août 2012).
  31. ↑ a et b(en) J. Mayasich, D. Grandmaison et C. Phillips, « Eastern Hellbender Status Assessment Report », U.S. Fish and Wildlife Service, 1er juin 2003(consulté le 25 août 2012).
  32. ↑ a b et c(en) David B Wake, « Caudata », sur Encyclopædia Britannica Online, Encyclopædia Britannica (consulté le 25 août 2012).
  33. (en) H. G. Cogger et R. G Zweifel, Encyclopedia of Reptiles and Amphibians, Academic Press, 1998, 69–70 p. (ISBN 978-0-12-178560-4).
  34. Stebbins 1995, p. 4.
  35. Dorit 1991, p. 858.
  36. (en) William E. Duellman, « Gymnophiona », sur Encyclopædia Britannica Online, Encyclopædia Britannica (consulté le 30 septembre 2012).
  37. (en) Louise Zylberberg et Marvalee H. Wake, « Structure of the scales of Dermophis and Microcaecilia (Amphibia: Gymnophiona), and a comparison to dermal ossifications of other vertebrates », Journal of Morphology, vol. 206, no 1,‎ 1990, p. 25–43 (DOI 10.1002/jmor.1052060104)
  38. Roger Eckert (trad. de l'anglais), Physiologie animale : mécanismes et adaptations, Paris/Bruxelles, De Boeck Université, 1999, 822 p. (ISBN 2-7445-0053-4 et 9782744500534), p. 575
  39. (en) Paul D. N. Hebert, « Amphibian morphology and reproduction », sur Encyclopedia of Earth, Biodiversity Institute of Ontario, 12 octobre 2008(consulté le 15 août 2012)
  40. Stebbins 1995, p. 10-11
  41. Losange 2008, p. 12
  42. (en) R. I. C. Spearman, The Integument : A Textbook of Skin Biology, Cambridge University Press, 1973, 208 p. (ISBN 978-0-521-20048-6, lire en ligne), p. 81
  43. Biodiversité : découverte de la première grenouille fluorescente, Futura-Sciences, 17 mars 2017
  44. ↑ a b c et dDorit 1991, p. 846
  45. ↑ a et bStebbins 1995, p. 26-36
  46. Stebbins 1995, p. 26-36
  47. (en) John T. Jr. Beneski, « Adaptive significance of tail autotomy in the salamander, Ensatina », Journal of Herpetology, vol. 23, no 3,‎ 1989, p. 322–324 (DOI 10.2307/1564465)
  48. Dorit 1991, p. 306
  49. Stebbins 1995, p. 100
  50. Stebbins 1995, p. 69
  51. ↑ a et b(en) William E. Duellman et George R. Zug, « Amphibian », sur Encyclopædia Britannica Online, Encyclopædia Britannica, 2012(consulté le 27 mars 2012)
  52. ↑ a b et cDorit 1991, p. 847
  53. Stebbins 1995, p. 66
  54. Dorit 1991, p. 849
  55. Jacques Hourdry et André Beaumont, Les métamorphoses des amphibiens, Masson, 1985, p. 11.
  56. (en) Nikolay Natchev, Nikolay Tzankov et Richard Geme, « Green frog invasion in the Black Sea: habitat ecology of the Pelophylax esculentus complex (Anura, Amphibia) population in the region of Shablenska Тuzla lagoon in Bulgaria », Herpetology Notes, vol. 4,‎ 2011, p. 347–351 (lire en ligne)
  57. (en) C. Michael Hogan, « Abiotic factor », sur Encyclopedia of Earth, National Council for Science and the Environment, 31 juillet 2010(consulté le 30 septembre 2012)
  58. Stebbins 1995, p. 140-141
  59. ↑ a et b(en) Willia E. Duellman et Linda Trueb, Biology of Amphibians, JHU Press, 1994, 77–79 p. (ISBN 978-0-8018-4780-6, lire en ligne)
  60. ↑ a et bStebbins 1995, p. 154-162
  61. (en) Michael J. Adams et Christopher A. Pearl, « Ascaphus truei », AmphibiaWeb, 2005(consulté le 23 novembre 2012)
  62. (en) Sakae Kikuyama, Kousuke Kawamura, Shigeyasu Tanaka et Kakutoshi Yamamoto, International Review of Cytology : A Survey of Cell Biology, San Diego, Academic Press, 1993, 105–126 p. (ISBN 978-0-12-364548-7, lire en ligne), « Aspects of amphibian metamorphosis: Hormonal control »
  63. (en) Robert A. Newman, « Adaptive plasticity in amphibian metamorphosis », BioScience, vol. 42, no 9,‎ 1992, p. 671–678 (DOI 10.2307/1312173, JSTOR 1312173)
  64. (en) Perry W. Gilbert, « Observations on the eggs of Ambystoma maculatum with especial reference to the green algae found within the egg envelopes », Ecology, vol. 23, no 2,‎ 1942, p. 215–227 (DOI 10.2307/1931088, JSTOR 1931088)
  65. (en) Bruce Waldman et Michael J. Ryan, « Thermal advantages of communal egg mass deposition in wood frogs (Rana sylvatica) », Journal of Herpetology, vol. 17, no 1,‎ 1983, p. 70–72 (DOI 10.2307/1563783, JSTOR 1563783)
  66. (en) Walter E. Jr Meshaka, « Eleutherodactylus planirostris », AmphibiaWeb (consulté le 12 décembre 2012)
  67. (en) Laura Dalgetty et Malcolm W. Kennedy, « Building a home from foam: túngara frog foam nest architecture and three-phase construction process », Biology Letters, vol. 6, no 3,‎ 2010, p. 293–296 (PMID 20106853, PMCID 2880057, DOI 10.1098/rsbl.2009.0934)
  68. (en) « Proteins of frog foam nests », School of Life Sciences, University of Glasgow (consulté le 24 août 2012)
  69. (en) Donald W. Linzey, Vertebrate Biology : Systematics, Taxonomy, Natural History, and Conservation, JHU Press, 2020, p. 137
  70. Stebbins 1995, p. 6-9
  71. (en) Martha L. Crump, « Amphibian diversity and life history », Amphibian Ecology and Conservation. A Handbook of Techniques,‎ 2009, p. 3-20 (lire en ligne)
  72. (en) Peter Janzen, « Nannophrys ceylonensis », AmphibiaWeb, 10 mai 2005(consulté le 20 juillet 2012)
  73. (en) W. E. Duellman et G. R. Zug, « Anura: From tadpole to adult », sur Encyclopædia Britannica Online, Encyclopædia Britannica (consulté le 13 juillet 2012)
  74. Stebbins 1995, p. 179-181
  75. ↑ a et b(en) William E. Duellman et George R. Zug, « Anura », sur Encyclopædia Britannica Online, Encyclopædia Britannica, 2012(consulté le 26 mars 2012)
  76. (en) Martha L. Crump, « Cannibalism by younger tadpoles: another hazard of metamorphosis », Copeia, vol. 4, no 4,‎ 1986, p. 1007–1009 (DOI 10.2307/1445301, JSTOR 1445301)
  77. (en) Barry D. Valentine et David M. Dennis, « A comparison of the gill-arch system and fins of three genera of larval salamanders, Rhyacotriton, Gyrinophilus, and Ambystoma », Copeia, vol. 1964, no 1,‎ 1964, p. 196–201 (DOI 10.2307/1440850, JSTOR 1440850)
  78. (en) H. Bradley Shaffer, « Ambystoma gracile », AmphibiaWeb, 2005(consulté le 21 novembre 2012)
  79. (en) Robin R Kiyonaga, « Metamorphosis vs. neoteny (paedomorphosis) in salamanders (Caudata) » (consulté le 21 novembre 2012)
  80. (en) William E. Duellman et Linda Trueb, Biology of Amphibians, JHU Press, 1994, 191–192 p. (ISBN 978-0-8018-4780-6, lire en ligne)
  81. Stebbins 1995, p. 196
  82. (en) H. Bradley Shaffer, C. C. Austin et R. B. Huey, « The consequences of metamorphosis on salamander (Ambystoma) locomotor performance », Physiological Zoology, vol. 64, no 1,‎ 1991, p. 212–231 (JSTOR 30158520)
  83. (en) David B. Wake, « Caudata », sur Encyclopædia Britannica Online, Encyclopædia Britannica, 2012(consulté le 26 mars 2012)
  84. (en) W. R. Breckenridge, S. Nathanael et L. Pereira, « Some aspects of the biology and development of Ichthyophis glutinosus », Journal of Zoology, vol. 211,‎ 1987, p. 437–449
  85. (en) Marvalee H. Wake, « Fetal maintenance and its evolutionary significance in the Amphibia: Gymnophiona », Journal of Herpetology, vol. 11, no 4,‎ 1977, p. 379–386 (DOI 10.2307/1562719, JSTOR 1562719)
  86. (en) William E. Duellman, « Gymnophiona », sur Encyclopædia Britannica Online, Encyclopædia Britannica, 2012(consulté le 26 mars 2012)
  87. (en) Mark Wilkinson, Alexander Kupfer, Rafael Marques-Porto, Hilary Jeffkins, Marta M. Antoniazzi et Carlos Jared, « One hundred million years of skin feeding? Extended parental care in a Neotropical caecilian (Amphibia: Gymnophiona) », , vol. 4, no 4,‎ 2008, p. 358-361 (PMID 18547909, PMCID 2610157, DOI 10.1098/rsbl.2008.0217)
  88. (en) Martha L. Crump, « Parental care among the Amphibia », Advances in the Study of Behavior, vol. 25,‎ 1996, p. 109–144 (DOI 10.1016/S0065-3454(08)60331-9)
  89. (en) J. L. Brown, V. Morales et K. Summers, « A key ecological trait drove the evolution of biparental care and monogamy in an amphibian », American Naturalist, vol. 175, no 4,‎ 2010, p. 436–446 (PMID 20180700, DOI 10.1086/650727)
  90. Dorit 1991, p. 853-854
  91. (en) María Claudia Fandiño, Horst Lüddecke et Adolfo Amézquita, « Vocalisation and larval transportation of male Colostethus subpunctatus (Anura: Dendrobatidae) », Amphibia-Reptilia, vol. 18, no 1,‎ 1997, p. 39–48 (DOI 10.1163/156853897X00297)
  92. (en) Arie van der Meijden, « Alytes obstetricans », AmphibiaWeb, 18 janvier 2010(consulté le 29 novembre 2012)
  93. (en) E. Semeyn, « Rheobatrachus silus », sur Animal Diversity Web, University of Michigan Museum of Zoology, 2002(consulté le 5 août 2012)
  94. (en) Jean-Marc Hero, John Clarke et Ed Meyer, « Assa darlingtoni », sur IUCN Red List of Threatened Species. Version 2012.2, 2004(consulté le 20 novembre 2012)
  95. (en) Enrique La Marca, Claudia Azevedo-Ramos, Débora Silvano, Luis A. Coloma, Santiago Ron, Jerry Hardy et Manfred Beier, « Pipa pipa (Suriname Toad) », sur IUCN Red List of Threatened Species. Version 2012.1, 2010(consulté le 24 août 2012)
  96. (en) René van Wijngaarden et Federico Bolaños, « Parental care in Dendrobates granuliferus (Anura: Dendrobatidae), with a description of the tadpole », Journal of Herpetology, vol. 26, no 1,‎ 1992, p. 102–105 (DOI 10.2307/1565037, JSTOR 1565037)
  97. (en) Jesse Gabbard, « Siren intermedia: Lesser Siren », sur Animal Diversity Web, University of Michigan Museum of Zoology, 2000(consulté le 11 août 2012)
  98. (en) H.R. Da Silva et M.C. De Britto-Pereira, « How much fruit do fruit-eating frogs eat? An investigation on the diet of Xenohyla truncata (Lissamphibia: Anura: Hylidae) », Journal of Zoology, vol. 270, no 4,‎ 2006, p. 692–698 (DOI 10.1111/j.1469-7998.2006.00192.x)
  99. (en) Linda Trueb et Carl Gans, « Feeding specializations of the Mexican burrowing toad, Rhinophrynus dorsalis (Anura: Rhinophrynidae) », Journal of Zoology, vol. 199, no 2,‎ 1983, p. 189–208 (DOI 10.1111/j.1469-7998.1983.tb02090.x)
  100. (en) W.J. Jr. Hamilton, « The food and feeding behavior of the green frog, Rana clamitans Latreille, in New York State », Copeia, American Society of Ichthyologists and Herpetologists, vol. 1948, no 3,‎ 1948, p. 203–207 (DOI 10.2307/1438455, JSTOR 1438455)
  101. Stebbins 1995, p. 56
  102. Stebbins 1995, p. 57-58
  103. (en) Charles W. Radcliffe, David Chiszar, Karen Estep et Murphy, « Observations on pedal luring and pedal movements in Leptodactylid frogs », Journal of Herpetology, vol. 20, no 3,‎ 1986, p. 300–306 (DOI 10.2307/1564496, JSTOR 1564496)
  104. (en) Catherine A. Toft, « Feeding ecology of Panamanian litter anurans: patterns in diet and foraging mode », Journal of Herpetology, vol. 15, no 2,‎ 1981, p. 139–144 (DOI 10.2307/1563372, JSTOR 1563372)
  105. (en) W.E. Bemis, K. Schwenk et M.H. Wake, « Morphology and function of the feeding apparatus in Dermophis mexicanus (Amphibia: Gymnophiona) », Zoological Journal of the Linnean Society, vol. 77, no 1,‎ 1983, p. 75–96 (DOI 10.1111/j.1096-3642.1983.tb01722.x)
  106. Stebbins 1995, p. 181-185
  107. ↑ a et bStebbins 1995, p. 76-77
  108. (en) Brian K. Sullivan, « Sexual selection and calling behavior in the American toad (Bufo americanus) », Copeia, vol. 1992, no 1,‎ 1992, p. 1–7 (DOI 10.2307/1446530, JSTOR 1446530)
  109. (en) L. F. Toledo et C. F. B. Haddad, When frogs scream! A review of anuran defensive vocalizations, Instituto de Biociências, São Paulo, 2007(lire en ligne), chap. 4
  110. (en) Steve A. Johnson, « The Cuban Treefrog (Osteopilus septentrionalis) in Florida », sur EDIS, University of Florida, 2010(consulté le 13 août 2012)
  111. (en) Richard Shine, « Sexual selection and sexual dimorphism in the Amphibia », Copeia, vol. 1979, no 2,‎ 1979, p. 297–306 (DOI 10.2307/1443418, JSTOR 1443418)
  112. ↑ a b et c(en) W. F. Gergits et R. G. Jaeger, « Site attachment by the red-backed salamander, Plethodon cinereus », Journal of Herpetology, vol. 24, no 1,‎ 1990, p. 91–93 (DOI 10.2307/1564297, JSTOR 1564297)
  113. (en) Gary S Casper, « Plethodon cinereus », AmphibiaWeb (consulté le 25 septembre 2012)
  114. (en) K. D. Wells, « Territoriality and male mating success in the green frog (Rana clamitans) », Ecology, vol. 58, no 4,‎ 1977, p. 750–762 (DOI 10.2307/1936211, JSTOR 1936211)
  115. ↑ a et b(en) G. T. Barthalmus et W. J. Zielinski, « Xenopus skin mucus induces oral dyskinesias that promote escape from snakes », Pharmacology, Biochemistry Behavior, vol. 30, no 4,‎ 1988, p. 957–959 (PMID 3227042, DOI 10.1016/0091-3057(88)90126-8)
  116. (en) John J Crayon, « Xenopus laevis », AmphibiaWeb (consulté le 8 octobre 2012)
  117. (en) G. E. E. Moodie, « Observations on the life history of the caecilian Typhlonectes compressicaudus (Dumeril and Bibron) in the Amazon basin », Canadian Journal of Zoology, vol. 56, no 4,‎ 1978, p. 1005–1008 (DOI 10.1139/z78-141)
  118. (en) Edmund D. Jr. Brodie, « Investigations on the skin toxin of the adult rough-skinned newt, Taricha granulosa », Copeia, vol. 1968, no 2,‎ 1968, p. 307–313 (DOI 10.2307/1441757, JSTOR 1441757)
  119. (en) Charles T. Hanifin, Mari Yotsu-Yamashita, Takeshi Yasumoto, Edmund D. Brodie et Edmund D. Jr. Brodie, « Toxicity of dangerous prey: variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa », Journal of Chemical Ecology, vol. 25, no 9,‎ 1999, p. 2161–2175 (DOI 10.1023/A:1021049125805)
  120. (en) Shana L. Geffeney, Esther Fujimoto, Edmund D. Brodie, Edmund D. Jr. Brodie et Peter C. Ruben, « Evolutionary diversification of TTX-resistant sodium channels in a predator–prey interaction », Nature, vol. 434, no 7034,‎ 2005, p. 759–763 (PMID 15815629, DOI 10.1038/nature03444)
  121. Stebbins 1995, p. 110
  122. (en) Jiri Patocka, Kräuff Wulff et MaríaVictoria Palomeque, « Dart Poison Frogs and Their Toxins », ASA Newsletter, vol. 5, no 75,‎ 1999(ISSN 1057-9419, lire en ligne)
  123. (en) Catherine R. Darst et Molly E. Cummings, « Predator learning favours mimicry of a less-toxic model in poison frogs », Nature, vol. 440, no 7081,‎ 2006, p. 208–211 (PMID 16525472, DOI 10.1038/nature04297)
  124. (en) Edmund D. Jr. Brodie, Robert T. Nowak et William R. Harvey, « Antipredator secretions and behavior of selected salamanders against shrews », Copeia, vol. 1979, no 2,‎ 1979, p. 270–274 (DOI 10.2307/1443413, JSTOR 1443413)
  125. (en) John T. Jr. Beneski, « Adaptive significance of tail autotomy in the Salamander, Ensatina », Journal of Herpetology, vol. 23, no 3,‎ 1989, p. 322–324 (DOI 10.2307/1564465, JSTOR 156446)
  126. (en) E. D. Jr. Brodie, « Biting and vocalisation as antipredator mechanisms in terrestrial salamanders », Copeia, vol. 1978, no 1,‎ 1978, p. 127–129 (DOI 10.2307/1443832, JSTOR 1443832)
  127. Avec les cinq principaux clades représentés : Agnathes (lamproies), Chondrichthyens (requins, raies), Placodermes (fossiles), Acanthodiens (fossiles), Osteichthyens (poissons osseux).
  128. Les poissons, amphibiens et reptiles sont des groupes paraphylétiques.
  129. « Systématique : ordonner la diversité du vivant », Rapport sur la Science et la technologie N°11, Académie des sciences, Lavoisier, 2010, p. 65
  130. ↑ a b et c(en) « Evolution of amphibians », University of Waikato: Plant and animal evolution (consulté le 30 septembre 2012)
  131. ↑ a b et c(en) Robert L. Carroll et Anthony Hallam, Patterns of Evolution, as Illustrated by the Fossil Record, Elsevier, 1977, 405–420 p. (ISBN 978-0-444-41142-6, lire en ligne)
  132. L'apparition des tétrapodes aquatiques date de « la fin du Dévonien moyen, dans une fourchette étroite comprise entre 375 et 380 Ma », (en) Jennifer CLACK, paléontologue à L'université de Cambridge, Grande-Bretagne, « Le premier pied à terre », Pour la Science,‎ février 2006.
  133. ↑ a et b(en) Jennifer A. Clack, « Ichthyostega », sur Tree of Life Web Project, 2006(consulté le 29 septembre 2012)
  134. (en) R. E. Lombard et J. R. Bolt, « Evolution of the tetrapod ear: an analysis and reinterpretation », Biological Journal of the Linnean Society, vol. 11, no 1,‎ 1979, p. 19–76 (DOI 10.1111/j.1095-8312.1979.tb00027.x)
  135. ↑ a b et c(en) J. O. I. Spoczynska, Fossils : A Study in Evolution, Frederick Muller Ltd, 1971, 208 p. (ISBN 978-0-584-10093-8), p. 120–125
  136. (en) D. San Mauro, « A multilocus timescale for the origin of extant amphibians », Molecular Phylogenetics and Evolution, vol. 56, no 2,‎ 2010, p. 554–561 (PMID 20399871, DOI 10.1016/j.ympev.2010.04.019)
  137. ↑ a et bWells (2007), p. 10-11
  138. (fr) M. Laurin, Systématique, paléontologie et biologie évolutive moderne : l’exemple de la sortie des eaux des vertébrés, Paris, Ellipses, 2008, 176 p. (ISBN 978-2-7298-3892-8)
  139. (en) B. W. Waggoner Speer, « Amphibia: Systematics », University of California Museum of Paleontology, 1995(consulté le 13 décembre 2012)
  140. (en) Michel Laurin et Robert R. Reisz, « A new perspective on tetrapod phylogeny. », dans S. Sumida et K. Martin, Amniotes Origins: Completing the Transition to Land, Londres, Academic Press, 1997(lire en ligne), p. 9-59
  141. (en) Diego San Mauro, Miguel Vences, Marina Alcobendas, Rafael Zardoya et Axel Meyer, « Initial diversification of living amphibians predated the breakup of Pangaea », The American Naturalist, vol. 165, no 5,‎ 2005, p. 590–599 (PMID 15795855, DOI 10.1086/429523)
  142. ↑ a b et c(en) J. Anderson, R. Reisz, D. Scott, N. Fröbisch et S. Sumida, « A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders », Nature, vol. 453, no 7194,‎ 2008, p. 515–518 (PMID 18497824, DOI 10.1038/nature06865)
  143. ↑ a et b(en) D. Marjanović et M. Laurin, « The origin(s) of modern amphibians: a commentary », Evolutionary Biology, vol. 36, no 3,‎ 2009, p. 336–338 (DOI 10.1007/s11692-009-9065-8)
  144. (en) K. Roelants, D.J. Gower, M. Wilkinson, S.P. Loader, S.D. Biju, K. Guillaume, L. Moriau et F. Bossuyt, « Global patterns of diversification in the history of modern amphibians », Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no 3,‎ 2007, p. 887–892
  145. (en) San Mauro, D., Vences, M., Alcobendas, M., Zardoya, R., & Meyer, A., « Initial diversification of living amphibians predated the breakup of Pangaea », American Naturalist, vol. 165, no 5,‎ 2005, p. 590–599.
  146. (en) Hugall, A. F., Foster, R., Lee, M. S. Y., « Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1 », Systematic Biology, vol. 56, no 3,‎ 2007, p. 543–563. (DOI 10.1080/10635150701477825)
  147. (en) Marjanović, D., Laurin, M., « Fossils, molecules, divergence times, and the origin of lissamphibians », Systematic Biology, vol. 56, no 3,‎ 2007, p. 369–388. (DOI 10.1080/10635150701397635)
  148. (en) David Cannatella, « Living amphibians », Tree of Life Web Project, 2007(consulté le 14 août 2012)
  149. (en) Z. Roček, « Chapter 14. Mesozoic Amphibians », dans H. Heatwole et R.L. Carroll, Amphibian Biology: Paleontology: The Evolutionary History of Amphibians, vol. 4, Surrey Beatty & Sons, 2000(ISBN 978-0-949324-87-0, lire en ligne), p. 1295–1331
  150. (en) Farish A. Jenkins Jr., Denis M. Walsh et Robert L. Carroll, « Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic », Bulletin of the Museum of Comparative Zoology, vol. 158, no 6,‎ 2007, p. 285–365 (DOI 10.3099/0027-4100(2007)158[285:AOEMAL]2.0.CO;2)
  151. (en) Ke-Qin Gao et Neil H. Shubin, « Late Jurassic salamandroid from western Liaoning, China », Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no 15,‎ 2012, p. 5767–5772 (DOI 10.1073/pnas.1009828109)
  152. ↑ a b et c(Alford, Richards et McDonald (2007)).
  153. (en) Darell Frost, « Amphibian Species of the World: an Online Reference. Version 5.6 (9 January 2013) », American Museum of Natural History, 2013(consulté le 16 mars 2013)
  154. (en) Martha L. Crump, « Amphibian diversity and life history », Amphibian Ecology and Conservation. A Handbook of Techniques,‎ 2009, p. 3-20 (lire en ligne)
  155. (en) M. L. McCallum, « Amphibian decline or extinction? Current declines dwarf background extinction rate », Journal of Herpetology, vol. 41, no 3,‎ 2007, p. 483–491 (DOI 10.1670/0022-1511(2007)41[483:ADOECD]2.0.CO;2, lire en ligne)
  156. (en) J. M. Hoekstra, J. L. Molnar, M.; Revenga, C. Jennings, M. D. Spalding, T. M. Boucher, J. C. Robertson, T. J. Heibel et K. Ellison, « Number of Globally Threatened Amphibian Species by Freshwater Ecoregion », sur The Atlas of Global Conservation: Changes, Challenges, and Opportunities to Make a Difference, The Nature Conservancy, 2010(consulté le 5 septembre 2012)
  157. (de) « Praxismerkblätter Artenschutz », sur KARCH, Suisse, Bulletin sur les pratiques de conservation de la nature (consulté le 6 septembre 2012)
  158. (en) « Amphibian Specialist Group », IUCN SSC Amphibian Specialist Group (consulté le 30 mars 2012)
  159. (en) James Hardin Waddle, Use of amphibians as ecosystem indicator species, University of Florida, 2006(lire en ligne)
  160. (en) Henry A. Regier et Gordon, L. Baskerville, Sustainable redevelopment of regional ecosystems degraded by exploitive development, DIANE Publishing, 1996, 36–38 p. (ISBN 978-0-7881-4699-2, lire en ligne), « Sustainability Issues for Resource Managers »
  161. (en) W. Bryan Jennings, David F. Bradford et Dale F. Johnson, « Dependence of the garter snake Thamnophis elegans on amphibians in the Sierra Nevada of California », Journal of Herpetology, vol. 26, no 4,‎ 1992, p. 503–505 (DOI 10.2307/1565132, JSTOR 1565132)
  162. Stebbins 1995, p. 249
  163. ↑ a et b(en) « Amphibian Conservation Action Plan », sur IUCN (consulté le 30 mars 2012)
  164. (en) « Panama Amphibian Rescue and Conservation Project », Amphibian Ark (consulté le 30 mars 2012)

Bibliographie

  • (en) R. L. Dorit, W. F. Walker et R. D. Barnes, Zoology, Saunders College Publishing, 1991, 1009 p. (ISBN 978-0-03-030504-7)
  • Losange, Amphibiens & reptiles, Paris, Editions Artemis, coll. « Découverte nature », 2008, 127 p. (ISBN 978-2-84416-650-0 et 2-84416-650-4)
  • (en) Ross A. Alford (dir.), Stephen J. Richards et Keith R. McDonald, Encyclopedia of Biodiversity, 2007(ISBN 978-0-12-226865-6 et 0-12-226865-2), « Amphibians, Biodiversity of », p. 1-12
  • (en) Robert C. Stebbins et Nathan W. Cohen, A Natural History of Amphibians, Princeton University Press, 1995, 316 p. (ISBN 978-0-691-03281-8, lire en ligne)
  • (en) Kentwood David Wells, The Ecology & Behavior of Amphibians, Chicago, University of Chicago Press, 2007, 1148 p. (ISBN 978-0-226-89335-8)
  • Claude Miaud et Jean Muratet, Les amphibiens de France ; Guide d'identification des œufs et des larves, Versailles/93-La Plaine-Saint-Denis, Éditions Quæ, 2018, 226 p. (ISBN 978-2-7592-2664-1, lire en ligne)

Voir aussi

Sur les autres projets Wikimedia :

  • Amphibia, sur Wikimedia Commons
  • Amphibia, sur Wikispecies
  • amphibien, sur le Wiktionnaire

Articles connexes

  • Herpétologie
  • Crapaud
  • Grenouille
  • Salamandre
  • Triton
  • Déclin des populations d'amphibiens
  • Chytridiomycose
  • Liste des genres d'amphibiens préhistoriques

Références taxinomiques

  • (fr + en) ITIS : Amphibia (consulté le 12 mars 2013)
  • (en) Catalogue of Life : Amphibia (consulté le 27 mars 2023)
  • (en) Fauna Europaea : Amphibia (consulté le 15 mars 2023)
  • (en) Animal Diversity Web : Amphibia (consulté le 12 mars 2013)
  • (en) NCBI : Amphibia (taxons inclus) (consulté le 12 mars 2013)
  • (en) Tree of Life Web Project : Amphibia (consulté le 12 mars 2013)

Liens externes

  • Site du Declining Amphibian Population Task Force
  • Site de l'équipe de protection des Amphibiens (Species Survival Commission)
  • « Amphibiens : entre la vie et la mare », La Science, CQFD, France Culture, 30 octobre 2023.

Bases de données et dictionnaires

  • Ressources relatives au vivantimage :
    • Animal Diversity Web
    • Australian Faunal Directory
    • Dyntaxa
    • EPPO Global Database
    • EU-nomen
    • Fauna Europaea
    • Paleobiology Database
    • Global Biodiversity Information Facility
    • iNaturalist
    • Interim Register of Marine and Nonmarine Genera
    • Nederlands Soortenregister
    • New Zealand Organisms Register
    • Plazi
    • Système d'information taxonomique intégré
    • World Register of Marine Species
    • ZooBank
  • Ressource relative à la santéimage :
    • Medical Subject Headings
  • Ressource relative à la rechercheimage :
    • JSTOR
  • Notices dans des dictionnaires ou encyclopédies généralistesimage :
    • Britannica
    • CALS Encyclopedia of Arkansas
    • Encyclopædia Iranica
    • L'Encyclopédie canadienne
    • Gran Enciclopedia Aragonesa
    • Gran Enciclopèdia Catalana
    • Gran Enciclopedia de Navarra
    • Larousse
    • Nationalencyklopedin
    • Maine: An Encyclopedia
    • Mississippi Encyclopedia
    • Store norske leksikon
    • Universalis
  • Notices d'autoritéimage :
    • BnF (données)
    • LCCN
    • GND
    • Japon
    • Israël
    • Tchéquie
  • image Portail de l’herpétologie

Auteur: www.NiNa.Az

Date de publication: 25 Mai, 2025 / 17:08

wikipedia, wiki, wikipédia, livre, livres, bibliothèque, article, lire, télécharger, gratuit, téléchargement gratuit, mp3, vidéo, mp4, 3gp, jpg, jpeg, gif, png, image, musique, chanson, film, livre, jeu, jeux, mobile, téléphone, android, ios, apple, téléphone portable, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, ordinateur

Amphibiens batraciens Pour les articles homonymes voir Amphibia homonymie Amphibia Amphibiens de differents ordres de gauche a droite et de haut en bas un anoure Litoria phyllochroa un seymouriamorphe Seymouria baylorensis un urodele Notophthalmus viridescens et un gymnophiones Dermophis mexicanus Classification ITISRegne AnimaliaEmbranchement ChordataSous embr VertebrataInfra embr GnathostomataSuper classe Tetrapoda ClasseAmphibia Gray 1825 Taxons de rang inferieur Clade Batrachomorpha Temnospondyli Lissamphibia amphibiens modernes Clade Reptiliomorpha ancestral au amniotes Lepospondyli Anthracosauria Les amphibiens Amphibia anciennement batraciens forment une classe de vertebres tetrapodes Ils sont aujourd hui definis comme un groupe monophyletique issu de l une des deux branches principales de tetrapodes l autre ayant conduit aux amniotes La branche de la zoologie qui les etudie ainsi que les reptiles est l herpetologie plus precisement la batrachologie du grec batrachos grenouille qui leur est specialement consacree Les amphibiens vivent dans une grande variete d habitats mais la majorite des especes affectionnent les ecosystemes terrestres d eau douce ou arboricoles Les amphibiens debutent generalement leur vie sous la forme d une larve aquatique qui se metamorphose plus tard en forme adulte definitive mais certaines especes n effectuent pas cette metamorphose soit en restant larvaires toute leur vie et se reproduisant ainsi neotenie soit en prenant la forme adulte miniature avant eclosion La larve a un mode de vie totalement aquatique et respire par le biais de branchies tandis que l adulte est dote de poumons et respire a l air libre Les amphibiens utilisent leur peau comme surface respiratoire secondaire et certaines especes de petites salamandres et de grenouilles terrestres respirent meme exclusivement par la peau et sont depourvues de poumons Ils ont un certain nombre de ressemblances avec les reptiles mais ces derniers sont des amniotes qui comme les oiseaux et les mammiferes n ont pas besoin d eau pour se reproduire Les amphibiens ont pour leur reproduction et la sante de leur peau permeable besoin d eaux chimiquement non polluees ce qui en fait de bons indicateurs ecologiques Dans les dernieres decennies il y a eu un declin spectaculaire de leurs populations a travers le monde du a la pollution et a la diffusion des mycoses Les premiers tetrapodomorphes sont apparus au Devonien parmi des poissons sarcopterygiens munis de poumons et de nageoires osseuses organes adaptes a l exondation reguliere et prolongee sur les estrans des estuaires deltas et autres milieux paraliques Les tetrapodes pre amniotes se sont diversifies et sont devenus le groupe dominant parmi les animaux terrestres au cours du Carbonifere avant d etre progressivement supplantes a partir du Permien par les amniotes dont l essor a contribue a la disparition au fil des extinctions de masse de nombreuses lignees de tetrapodes archaiques Seuls les ancetres de la sous classe des Lissamphibiens plus petits et moins diversifies ont survecu jusqu a nos jours Les trois ordres modernes d amphibiens sont les anoures grenouilles et crapauds les urodeles tritons et salamandres et les gymnophiones les cecilies Le nombre total d especes connues d amphibiens est d environ 7 000 dont pres de 90 sont des grenouilles a comparer avec les mammiferes environ 5000 especes Le plus petit amphibien et plus petit vertebre terrestre au monde est une grenouille de Nouvelle Guinee Paedophryne amauensis qui mesure seulement 7 7 mm Le plus grand amphibien vivant est la Salamandre geante de Chine Andrias davidianus avec 1 8 m de long toutefois bien en deca des six m de Mastodonsaurus espece eteinte qui vivait durant le Permien ou des sept m du Brachyopoide d Alweynskop au Lesotho qui vivait a la fin du Trias et au debut du Jurassique Selon la liste rouge de l UICN publiee en 2019 40 des 8 100 especes amphibiennes repertoriees sont en voie d extinction GeneralitesParmi les vertebres la superclasse des tetrapodes est divisee en plusieurs classes dont les squamates les crocodiliens les oiseaux et les mammiferes qui sont des amniotes dont les œufs sont portes ou pondus par la femelle et sont proteges par plusieurs membranes certaines impermeables Comme leurs œufs ne possedent pas ces membranes les amphibiens ont besoin du milieu aquatique pour pondre et mener a bien leur reproduction meme si certaines especes ont developpe diverses strategies pour proteger leurs larves voire se passer du stade larvaire aquatique durant lequel elles sont vulnerables Il y a accouplement en general mais sans fecondation interne le male deversant son sperme sur les œufs au moment ou la femelle pond Il existe cependant des exceptions comme la plupart des salamandres des amphibiens de l ordre des urodeles chez qui la femelle apres une fecondation interne conserve les embryons et les larves dans ses voies genitales cas de viviparite On ne rencontre actuellement C est a dire pas d amphibiens dans les milieux marins a l exception de rares grenouilles vivant dans les eaux saumatres des mangroves Sur terre les amphibiens preferent les habitats humides car ils doivent eviter que leur peau ne se desseche Le plus petit amphibien et vertebre dans le monde est une grenouille Microhylidae de Nouvelle Guinee Paedophryne amauensis decouverte en 2012 Elle mesure en moyenne 7 7 mm et fait partie d un genre qui contient quatre des dix plus petites especes de grenouilles au monde Le plus grand amphibien vivant mesure lui jusqu a 1 8 m de long Il s agit de la Salamandre geante de Chine Andrias davidianus qui demeure bien plus petite que ses parents eloignees dont l un plus grand connus Mastodonsaurus un temnospondyle ressemblant a un crocodile et vivant au Europe mesurant 6 m de long et ayant existe durant le Trias moyen Les amphibiens sont qualifies d animaux a sang froid car ils sont poikilothermes c est a dire qu ils ne peuvent pas reguler la temperature de leur corps et sont donc dependants des conditions thermiques exterieures Comme les reptiles leur thermoregulation est assuree par heliothermie ou thigmothermie Leur metabolisme de base est faible et par consequent leurs besoins alimentaires et energetiques sont peu importants Au stade adulte ils ont des conduits lacrymaux et les paupieres mobiles et la plupart des especes ont des oreilles qui peuvent detecter des vibrations dans l air ou du sol Ils ont une langue musculaire qui est protruse dans de nombreuses especes Les amphibiens modernes ont des vertebres completement ossifiees et de veritables articulations Leurs cotes sont generalement tres courtes voire fusionnees avec les vertebres Leur crane est large et court et souvent incompletement ossifie Leur peau contient peu de keratine et est depourvue d ecailles mis a part chez certaines cecilies La peau contient de nombreuses glandes a mucus et chez certaines especes des glandes produisant du poison Le cœur des amphibiens a trois chambres deux oreillettes et un ventricule Ils ont une vessie et les dechets azotes sont excretes principalement sous forme d uree La plupart des amphibiens pondent leurs œufs dans l eau et ont des larves aquatiques qui se metamorphosent pour devenir des adultes terrestres Les amphibiens respirent en aspirant l air par leurs narines dans la region buccopharyngee puis leurs narines sont obturees et l air est envoye dans les poumons a la suite de la contraction de la gorge Ils completent leur respiration par des echanges gazeux a travers leur peau fine richement vascularisee et souvent couverte de mucus qui permet la dissolution des gaz Les trois grands groupes d amphibiens vivant actuellement C est a dire sont assez differents tant par leur mode de vie que par leur apparence Les anoures Rainette aux yeux rouges Agalychnis callidryas avec ses membres bien adaptes pour grimper Article detaille Anoure L ordre des Anoura du grec ancien ἀn sans et oὐra queue comprend les grenouilles et les crapauds Ils ont generalement de longs membres posterieurs replies sous leur corps des pattes anterieures plus courtes des orteils palmes sans griffes pas de queue de grands yeux et une peau glandulaire humide On appelle communement grenouilles les membres de cet ordre qui ont la peau lisse tandis que ceux avec une peau verruqueuse sont connus comme des crapauds La difference entre grenouilles et crapauds n est pas basee sur un caractere officiel taxonomique et il y a de nombreuses exceptions a cette regle Les membres de la famille des Bufonidae sont connus comme les vrais crapauds Les grenouilles peuvent mesurer plus de 30 centimetres comme la Grenouille de Goliath Conraua goliath en Afrique de l Ouest mais aussi etre tres petites comme Paedophryne amauensis et ses 7 7 millimetres qui a ete decrite pour la premiere en Papouasie Nouvelle Guinee en 2012 et qui est aussi le plus petit vertebre connu au monde Bien que la plupart des especes soient associees a des habitats humides certaines se sont specialisees pour vivre dans les arbres ou dans les deserts Ainsi on trouve des anoures dans le monde entier a l exception des regions polaires L ordre des anoures est divise en trois sous ordres qui sont largement reconnus par la communaute scientifique mais les relations entre certaines familles restent floues Les futures etudes moleculaires devraient fournir de nouvelles informations sur leurs relations evolutives Le sous ordre des Archaeobatrachia comprend quatre familles de grenouilles primitives les Ascaphidae les Bombinatoridae les Discoglossidae et les Leiopelmatidae qui ont quelques caracteres divergents et sont probablement paraphyletique par rapport aux autres lignees de grenouilles Les six familles du sous ordre des Mesobatrachia plus avance en matiere d evolution sont les Megophryidae les Pelobatidae les Pelodytidae les Scaphiopodidae les Rhinophrynidae et les Pipidae exclusivement aquatiques Ces familles ont des caracteristiques intermediaires entre les deux autres sous ordres Le sous ordre des Neobatrachia est de loin le plus vaste et comprend les autres familles de grenouilles modernes comprenant notamment les especes les plus communes 96 des plus de 5 000 especes actuelles de grenouilles sont des Neobatrachia Les urodeles Article detaille Urodele Salamandre geante du Japon Andrias japonicus une salamandre primitive L ordre des Caudata du latin cauda signifiant queue egalement appeles Urodela est compose des salamandres et des tritons sont tres dependants du milieu aquatique elles ont un corps allonge une longue queue et quatre petites pattes Ces animaux ressemblent a des lezards mais ils ne sont toutefois pas plus apparentes aux lezards qu ils ne le sont aux mammiferes Les salamandres n ont pas de griffes ont une peau depourvue d ecailles lisse ou recouverte de tubercules et une queue aplatie verticalement Leur taille varie entre 20 mm pour Thorius pennatulus espece qui vit au Mexique et 1 8 m taille de la Salamandre geante de Chine Andrias davidianus Les salamandres sont presentes dans tout la region Holarctique de l hemisphere Nord La famille des Plethodontidae peut aussi se rencontrer en Amerique centrale et en Amerique du Sud au nord du bassin de l Amazone Les membres de plusieurs familles de salamandres sont devenus neotenique et ne terminent jamais leur metamorphose ou conservent des caracteristiques larvaires une fois adultes La plupart des salamandres mesurent moins de 15 cm de long Elles peuvent etre terrestres et aquatiques et de nombreuses especes alternent entre ces deux habitats au cours de l annee Sur terre elles passent la majeure partie de la journee cachees sous une pierre une branche tombee au sol ou dans la vegetation dense et sortent la nuit pour se nourrir de vers d insectes et d autres invertebres Triturus dobrogicus un urodele evolue Le sous ordre des Cryptobranchoidea comprend les salamandres primitives Un certain nombre de fossiles de cryptobranchides ont ete trouves mais on ne connait que trois especes existantes de nos jours la Salamandre geante de Chine Andrias davidianus la Salamandre geante du Japon Andrias japonicus et le Menopome Cryptobranchus alleganiensis en Amerique du Nord Ces amphibiens de grande taille conservent plusieurs caracteristiques larvaires a leur stade adulte les fentes des branchies sont presentes et les yeux n ont pas de paupieres Ils se caracterisent par leur capacite a se nourrir par aspiration en creant une depression d un cote ou l autre de la machoire inferieure Le male creuse le nid incite la femelle a pondre ses œufs a l interieur et les garde En plus de respirer par leurs poumons ils respirent par les nombreux plis de leur peau fine qui disposent de vaisseaux capillaires proches de la surface Le sous ordre des Salamandroidea est compose de salamandres plus evoluees Elles different des cryptobranchides par leur os prearticulaire fusionne a la machoire inferieure et par leur pratique de la fecondation interne Chez les Salamandroidea le male depose un paquet de sperme le spermatophore et la femelle le ramasse et l insere dans son cloaque ou le sperme est stocke jusqu a ce que les œufs soient pondus La plus grande famille de ce groupe est celle des Plethodontidae les salamandres sans poumons qui comprend 60 de toutes les especes de salamandres La famille des Salamandridae comprend les vraies salamandres et on nomme tritons les membres de la sous famille Pleurodelinae Le troisieme sous ordre celui des Sirenoidea compte quatre especes dans son unique famille des Sirenidae Les membres de cet ordre sont des salamandres aquatiques ressemblant a des anguilles depourvues de membres posterieurs et aux membres anterieurs reduits Certaines de leurs caracteristiques sont primitives tandis que d autres sont plus evoluees La fertilisation semble etre externe car les males n ont pas les glandes cloacales utilisees par les salamandrides pour produire les spermatophores et les femelles n ont pas de spermatheques pour le stockage du sperme Malgre cela les œufs sont pondus un a un un comportement peu propice a la fecondation externe Les gymnophiones Article detaille Gymnophiona La cecilie sud americaine Siphonops paulensis L ordre des Gymnophiona du grec gymnos signifiant nu et ophis signifiant serpent egalement appeles Apoda du latin an signifiant sans et du grec poda signifiant pattes comprend les cecilies Ce sont de longs animaux cylindriques depourvus de pattes ressemblant superficiellement aux serpents et aux vers Les adultes mesurent entre 8 et 75 cm de long a l exception notable de Caecilia thompsoni qui peut atteindre une longueur de 150 centimetres La peau des cecilies presente un grand nombre de plis transversaux et chez certaines especes elle est recouverte de minuscules ecailles dermiques Elles ont des yeux rudimentaires recouverts d une peau et dont la fonction se limite probablement a discerner les differences d intensite lumineuse Elles ont egalement une paire de petits tentacules pres de l œil qui peuvent s etendre et possedent des fonctions tactiles et olfactives La plupart des cecilies vivent sous la terre dans des galeries creusees dans le sol humide dans du bois en decomposition ou sous des debris vegetaux mais certains sont aquatiques La plupart des especes pondent leurs œufs sous la terre et des que les larves eclosent elles se dirigent vers le point d eau le plus proche D autres especes portent les œufs et la metamorphose a lieu avant qu ils n eclosent Enfin de plus rares especes donnent naissance a des jeunes qu elles nourrissent avec des secretions glandulaires tandis qu ils sont dans l oviducte On rencontre les cecilies dans les regions tropicales d Afrique d Asie d Amerique centrale et d Amerique du Sud Anatomie et physiologieLa peau Les couleurs vives de Hyperolius viridiflavus indiquent que c est une espece toxique La structure tegumentaire de la peau des amphibiens comporte certaines caracteristiques communes avec celle des autres vertebres terrestres Ainsi leur peau presente des couches externes fortement keratinisees et renouvelees periodiquement a travers un processus de mue controle par l hypophyse et la thyroide Les verrues sont communes notamment chez les crapauds Contrairement aux mammiferes et aux oiseaux dont la peau est renouvelee par petites plaques les amphibiens muent en perdant l integralite de la couche externe de la peau en une seule fois a intervalles reguliers L intervalle entre deux mues varie suivant l espece Il leur arrive frequemment de manger ensuite cette mue Les cecilies different des autres amphibiens par leurs ecailles dermiques integrees dans le derme entre les sillons de la peau Ces ecailles ont une vague ressemblance avec celles des poissons osseux Les lezards et certaines grenouilles ont des plaques osseuses semblables au niveau du derme mais il s agit la d un exemple de convergence evolutive des structures similaires s etant developpees independamment dans diverses lignees de vertebres La peau des amphibiens est permeable a l eau Des echanges gazeux peuvent avoir lieu a travers la peau ce qui permet aux adultes de respirer sans remonter a la surface de l eau et d hiberner au fond des etangs ou des mares Pour eviter que leur peau fine et fragile ne se desseche les amphibiens ont developpe des glandes a mucus principalement localisees sur la tete le dos et la queue Les secretions produites par celles ci les aident a garder la peau humide En outre la plupart des especes d amphibiens ont des glandes qui secretent des substances desagreables ou toxiques Certaines toxines produites par des amphibiens peuvent etre mortelles pour les humains tandis que d autres ont peu d effet Les principales glandes productrices de poison les parotides produisent une neurotoxine la bufotoxine Elles sont situees derriere les oreilles des crapauds le long du dos des grenouilles derriere les yeux des salamandres et sur la surface superieure des cecilies La couleur de la peau des amphibiens depend de trois couches de cellules pigmentaires appelees chromatophores Ces trois couches de cellules comprennent les melanophores occupant la couche la plus profonde les guanophores formant une couche intermediaire et contenant de nombreux granules produisant une couleur bleu vert et les lipophores jaunes la couche la plus superficielle La plupart des especes adoptent des couleurs leur permettant de se fondre dans leur environnement Certaines d entre elles sont meme capables de modifier leur coloration selon le milieu dans lequel elles evoluent a la maniere des cameleons mais de facon moins marquee Ce changement de couleur est initie par des hormones secretees par l hypophyse a partir des informations fournies par les yeux Contrairement aux poissons osseux il n y a pas de controle direct du systeme nerveux sur les cellules pigmentaires et cela se traduit par un changement de couleur plus lent que chez les poissons Une peau de couleur vive indique generalement que l espece est toxique et constitue un avertissement pour les predateurs En 2017 des chercheurs de l universite de Buenos Aires ont decouvert la premiere grenouille fluorescente Hypsiboas punctatus chose unique chez les amphibiens alors qu ils etaient en train d etudier sa pigmentation A la lumiere du jour cette grenouille arbore des couleurs vertes jaunes ou rouges mais eclairee par un faisceau ultraviolet elle se met a briller intensement d une couleur bleu vert D autre part elle possede des molecules fluorescentes jamais encore observees chez des animaux Celles ci sont concentrees dans son tissu lymphatique dans sa peau et dans ses secretions glandulaires Squelette et locomotion Le squelette des amphibiens ressemble fortement a celui des autres tetrapodes En effet ils ont tous quatre membres sauf pour les cecilies et quelques especes de salamandres aux membres reduits ou absents Les os sont creux et legers Le systeme musculo squelettique est robuste pour lui permettre de soutenir la tete et le corps La ceinture scapulaire est soutenue par des muscles et la ceinture pelvienne bien developpee est rattachee au squelette par une paire de cotes reliees au sacrum L ilion penche vers l avant et le corps est maintenu pres du sol ce qui n est pas le cas chez les mammiferes Squelette d un Crapaud cornu du Bresil Ceratophrys cornuta Chez la plupart des amphibiens la patte avant comporte quatre doigts et la patte arriere cinq mais aucun ne presente de griffes Certaines especes de salamandres ont moins de doigts et les Amphiuma ressemblant a des anguilles ont des pattes minuscules Les Sirenoidea des salamandres aquatiques ont quant a elles des membres anterieurs trapus mais pas de membres posterieurs Les cecilies n ont pas de pattes Elles progressent dans leurs galeries a la maniere des vers de terre par des contractions musculaires le long de leur corps Sur la surface du sol ou dans l eau elles se deplacent en ondulant Chez les grenouilles les pattes posterieures sont plus grandes que les pattes anterieures trait particulierement marque chez les especes qui se deplacent principalement en sautant ou en nageant Les especes qui se deplacent en marchant ont des membres posterieurs developpes et les fouisseurs ont pour la plupart des membres courts et un corps large Les pieds peuvent presenter diverses adaptations suivant le mode de vie comme des orteils palmes adaptes a la natation de larges ventouses adhesives pour l escalade et des tubercules keratinises sur les pattes de derriere pour creuser les grenouilles creusent generalement dans le sol en reculant Chez la plupart des salamandres les membres sont courts ont plus ou moins la meme longueur et sont perpendiculaires au corps Lorsqu elles marchent sur terre la queue passe d un cote a l autre et peut etre utilisee comme balancier notamment pour grimper Dans leur demarche normale elles avancent une patte apres l autre de la meme maniere que leurs ancetres les osteichthyens Certaines salamandres appartenant au genre Aneides et certains Plethodontidae grimpent aux arbres et ont de longs membres de larges ventouses et une queue prehensile Chez les salamandres aquatiques et les tetards de grenouilles la queue a les nageoires dorsales et ventrales et se deplacent de droite a gauche permettant a l animal de se propulser Les grenouilles adultes n ont pas de queue et celle des cecilies est tres courte Les salamandres peuvent utiliser leur queue pour se defendre et certaines especes l abandonnent derriere elles pour faire diversion la queue continuant a se contracter et s echapper On appelle ce comportement autotomie C est le cas de certaines especes de Plethodontidae chez lesquelles la queue se detache facilement La queue et les membres peuvent etre regeneres Par contre les membres des grenouilles adultes ne se regenerent pas contrairement a ceux de leurs tetards Systeme circulatoire Siphonops annulatus ressemble a un ver de terre Les amphibiens ont un stade larvaire et un stade adulte avec des systemes circulatoires bien distincts Chez la larve la circulation est similaire a celle d un poisson et le cœur compose de deux compartiments envoie le sang vers les branchies ou il est oxygene avant qu il ne traverse le reste du corps et revienne au cœur en ne formant qu une seule boucle Chez l adulte les amphibiens et notamment les grenouilles perdent leurs branchies et developpent des poumons Leur cœur se compose d un ventricule unique et de deux oreillettes Lorsque le ventricule se contracte le sang desoxygene est pompe a travers l artere pulmonaire vers les poumons puis les contractions continuent et envoie le sang oxygene dans le reste du corps Le melange du sang oxygene et du sang non oxygene est minimise par l anatomie des chambres Les systemes nerveux et sensoriel Le systeme nerveux est semblable a celui des autres vertebres avec un cerveau central une moelle epiniere et des nerfs dans tout le corps Le cerveau des amphibiens est moins bien developpe que celui des reptiles des oiseaux et des mammiferes mais sa morphologie et son fonctionnement sont similaires a celui d un poisson Il se compose d un telencephale d un mesencephale et d un cervelet de tailles equivalentes Le telencephale recoit les signaux sensoriels de l odorat dans le lobe olfactif et de la vue dans le lobe optique et il est en outre le centre de comportement et d apprentissage Le cervelet controle la coordination musculaire et le bulbe rachidien regule certaines fonctions des organes y compris le rythme cardiaque et la respiration Le cerveau envoie des signaux a travers la moelle epiniere et les nerfs afin de reguler l activite du reste du corps La glande pineale connue chez l Homme pour reguler le sommeil produit les hormones impliquees dans l hibernation et l estivation des amphibiens Les tetards possedent une ligne laterale comme leurs ancetres les poissons mais elle a disparu chez les amphibiens terrestres adultes Certaines cecilies possedent des electrorecepteurs qui leur permettent de localiser les objets autour d elles lorsqu elles sont immergees dans l eau Les oreilles sont bien developpees chez les grenouilles Il n y a pas d oreille externe mais un large tympan est situe juste derriere l œil Il vibre et le son est transmis par un seul os l etrier a l oreille interne Seuls les sons a haute frequence tels que les appels d accouplement se font entendre de cette maniere Les bruits de plus basse frequence peuvent etre detectes par un autre mecanisme des cellules ciliees specialisees appelees papilla amphibiorum situees dans l oreille interne sont capables de deceler ces sons Une autre caracteristique propre aux grenouilles et aux salamandres est le complexe attenant columelle opercule de la capsule auditive qui permet aux animaux de ressentir les vibrations de l air ou du sol Les oreilles des salamandres et des cecilies sont moins developpees que celles des grenouilles et ces especes ne peuvent generalement pas communiquer par des sons Les yeux des tetards n ont pas de paupieres mais ils subissent diverses evolutions au moment de la metamorphose la cornee prend une forme de dome le cristallin s aplatit et les paupieres et les glandes et conduits associes apparaissent Les yeux des adultes sont intermediaires entre ceux des invertebres et ceux des autres vertebres plus evolues Ils permettent la vision des couleurs et de la profondeur de champ La retine est composee de cellules en batonnet sensibles a une large gamme de longueurs d onde Systeme digestif et excreteur Grenouille dissequee 1 Oreillette droite 2 Poumons 3 Aorte 4 Grappe d œufs 5 Colon 6 Oreillette gauche 7 Ventricule 8 Estomac 9 Foie 10 Vesicule biliaire 11 Intestin grele 12 Cloaque De nombreux amphibiens attrapent leurs proies en lancant sur elles leur longue langue collante avant de les saisir avec leurs machoires Certains avalent leur proie en avancant rapidement et a plusieurs reprises la tete vers l avant afin de faire progresser les aliments vers le fond de la bouche en se servant de leur inertie La plupart des amphibiens avalent leur proie tout entiere sans macher et ils possedent donc un ventre volumineux pour pouvoir recevoir ces proies L œsophage est court borde de cils et couvert de mucus produit par les glandes de la bouche et du pharynx ce qui facilite le transit de la nourriture vers l estomac Leur estomac produit de la chitinase une enzyme qui permet de digerer la cuticule chitineuse des arthropodes Les amphibiens possedent une vessie un pancreas un foie et une vesicule biliaire Le foie est generalement de grande taille avec deux lobes Comme il a pour fonction de stocker le glycogene et les graisses sa taille varie d une saison a l autre selon que ces reserves sont en constitution ou utilisees Le tissu adipeux est une autre reserve d energie pour les amphibiens et on le trouve dans l abdomen sous la peau et chez certaines salamandres dans la queue Les amphibiens ont deux reins situes au niveau du dos dans la partie superieure de la cavite abdominale Leur fonction est de filtrer le sang pour en extraire les dechets metaboliques et transporter l urine par les ureteres vers la vessie ou elle est stockee avant d etre evacuee periodiquement par l intermediaire du cloaque Les larves tout comme les adultes des especes les plus aquatiques excretent l azote sous forme d ammoniac dans de grandes quantites d urine diluee tandis que les especes terrestres qui doivent economiser l eau excretent l azote sous forme d uree un produit moins toxique qui peut etre concentre et stocke Certaines grenouilles arboricoles ayant un acces limite a l eau excretent leurs dechets metaboliques sous forme d acide urique Systeme respiratoire L Axolotl Ambystoma mexicanum conserve ses branchies sous sa forme adulte Les larves se distinguent surtout par leur respiration branchiale alors que les adultes ont une respiration pulmonaire Compares a ceux des amniotes les poumons des amphibiens sont primitifs avec peu de cloisons internes et de grandes alveoles et par consequent le taux de diffusion de l oxygene dans le sang est relativement lent L approvisionnement des poumons en air est realise par aspiration par voie buccale La plupart des amphibiens cependant sont en mesure de realiser des echanges gazeux dans l eau ou dans l air par l intermediaire de leur peau Pour que cette respiration cutanee fonctionne la surface de la peau est tres vascularisee et doit rester humide pour permettre a l oxygene de se diffuser a un taux suffisamment eleve Comme la concentration d oxygene dans l eau augmente a la fois lorsque la temperature est basse et que le debit est eleve les amphibiens aquatiques peuvent lorsque ces conditions sont reunies s appuyer principalement sur la respiration cutanee comme le font la grenouille du lac Titicaca Telmatobius culeus et la salamandre Menopome A l air libre ou l oxygene est plus concentre certaines petites especes peuvent compter uniquement sur les echanges gazeux cutanes pour respirer le cas le plus celebre etant celui des salamandres de la famille des Plethodontidae qui n ont ni poumons ni branchies Les amphibiens presentent tous des branchies lors de leur stade larvaire et certaines salamandres aquatiques les conservent sous leur forme adulte ReproductionMale Litoria xanthomera saisissant la femelle pendant l amplexus Pour se reproduire les amphibiens ont besoin d eau douce meme si certains pondent leurs œufs sur la terre ayant developpe differents moyens pour les conserver a un niveau d humidite suffisant Quelques uns par exemple Fejervarya raja peuvent vivre en eau saumatre mais aucun amphibien n est reellement marin On a cependant observe quelques cas particuliers de populations d amphibiens colonisant des eaux salees Ce fut le cas en mer Noire avec l hybride naturel Pelophylax esculentus en 2010 Plusieurs centaines d especes de grenouille issues d une meme radiation evolutive dont notamment les Eleutherodactylus les du Pacifique les Microhylidae d Oceanie et diverses especes de grenouilles tropicales n ont pas besoin d eau pour se reproduire La quasi totalite de ces grenouilles vivent dans les forets tropicales humides et elles ne possedent pas de stade larvaire de leurs œufs eclosent directement des versions miniatures de l adulte qui passent par le stade de tetard alors qu elles sont encore dans l œuf La reussite de leur reproduction depend alors de la quantite de precipitations et du fait que celles ci coincident avec le moment de la reproduction Dans les tropiques de nombreux amphibiens se reproduisent tout au long de l annee Dans les regions temperees la reproduction est saisonniere et a generalement lieu au printemps car elle est declenchee par l augmentation de la longueur du jour la hausse des temperatures ou d importantes precipitations Des experiences ont montre l importance de la temperature pour declencher la reproduction mais dans les regions arides c est souvent une tempete qui la provoque Chez les anoures les males arrivent generalement avant les femelles sur les sites de reproduction et leurs chants stimulent alors l ovulation des femelles et la production d hormones sexuelles chez les males immatures Chez les cecilies la fecondation est interne le male introduisant son dans le cloaque de la femelle Les glandes de Muller situees a l interieur du cloaque des males secretent un fluide qui ressemble a celui produit par les glandes de la prostate des mammiferes et qui permet de transporter et nourrir le sperme La fertilisation a probablement lieu dans l oviducte La majorite des salamandres pratiquent egalement la fecondation interne Pour la plupart d entre elles le male depose un spermatophore petit paquet de sperme sur le dessus d un cone gelatineux sur le sol ou dans l eau La femelle saisit le paquet de sperme avec les levres de son cloaque et le pousse dans l orifice Les spermatozoides atteignent alors la spermatheque situee au sommet du cloaque et ils y restent jusqu a l ovulation qui peut avoir lieu plusieurs mois plus tard Les parades nuptiales et les methodes de transfert du spermatophore varient selon les especes Dans certains cas le spermatophore peut etre place directement dans le cloaque de la femelle alors que chez d autres la femelle peut etre guidee vers le spermatophore ou retenue par une etreinte appelee amplexus Certaines salamandres primitives appartenant aux familles des Sirenidae des Hynobiidae et des Cryptobranchidae pratiquent la fertilisation externe de la meme maniere que les grenouilles la femelle pondant ses œufs dans l eau et le male liberant son sperme sur la masse d œufs A quelques exceptions pres les grenouilles utilisent la fecondation externe Le male saisit la femelle avec ses pattes avant soit au niveau des pattes avant soit au niveau des pattes arriere voire dans le cas de Epipedobates tricolor autour du cou Ils restent dans cette position leurs cloaques places non loin l un de l autre et tandis que la femelle pond les œufs le male les recouvre de sa semence Des callosites rugueuses sur les pattes du male permettent d avoir plus d adherence pour conserver cette position suffisamment longtemps Chez le crapaud accoucheur Alytes obstetricans le male recueille et conserve la masse d œufs sur ses cuisses et la base de son dos formant une sorte de panier avec ses pattes arriere Oophaga granulifera constitue une exception puisque le male et la femelle placent bien leurs cloaques a proximite mais sont orientes vers des directions opposees et relachent les œufs et le sperme en meme temps Ascaphus truei utilise la fecondation interne Seuls les males disposent d une queue qui constitue un prolongement du cloaque et est utilisee pour fertiliser la femelle Cette grenouille vit dans les rivieres a courant rapide et la fecondation interne evite que les spermatozoides soient emportes par le courant avant que la fecondation n ait lieu Le sperme peut etre conserve dans des tubes de stockage connectes a l oviducte jusqu au printemps suivant La duree de la periode de reproduction est variable suivant les especes En regle generale elle est assez longue les males arrivant progressivement sur les sites de reproduction ou les premiers s installent sur un territoire et chantent tandis que d autres attendent qu un territoire soit libere Petit a petit les femelles arrivent choisissent un partenaire et pondent leurs œufs A leur depart le territoire change de mains et ainsi de suite jusqu a ce que plus aucune femelle ne vienne sur les sites de reproduction marquant la fin de celle ci D autres especes ont une periode de reproduction beaucoup plus courte avec une activite plus marquee Il s agit notamment des especes fouisseuses vivant dans des regions arides qui emergent apres de fortes pluies et se rassemblent sur un site de reproduction Les animaux sont attires par le chant du premier male a trouver un endroit approprie comme une flaque qui se forme au meme endroit a chaque saison des pluies Les grenouilles assemblees peuvent appeler a l unisson et une activite frenetique s ensuit les males se bousculant pour s accoupler avec les femelles generalement moins nombreuses Cycle de vieLa plupart des amphibiens se metamorphosent un processus de changement morphologique significatif apres la naissance Au cours du developpement classique des amphibiens les œufs sont pondus dans l eau et les larves sont adaptees a un mode de vie aquatique Les grenouilles les crapauds et les salamandres sortent de l œuf sous forme de larves munies de branchies externes La metamorphose des amphibiens est regulee par la concentration dans le sang de deux hormones antagonistes la thyroxine qui stimule la metamorphose et la prolactine qui contrecarre l effet de la thyroxine Les evenements de la metamorphose sont induits par le passage de la concentration de ses hormones au dela de valeurs seuils dans les differents tissus Comme le developpement embryonnaire se fait surtout en dehors du corps des parents il est soumis a de nombreuses adaptations decoulant des conditions environnementales Ainsi les tetards ont des cretes cornees au lieu de dents et des extensions de la peau plutot que des nageoires Ils disposent aussi d un organe sensoriel la ligne laterale similaire a celui des poissons Apres la metamorphose ces organes deviennent inutiles et vont disparaitre petit a petit a la suite de la degenerescence des cellules appelee apoptose La variete des adaptations liees aux specificites de l environnement chez les amphibiens est tres importantes et de nombreuses decouvertes sont encore a faire Œufs Œufs d amphibiens entoures de gelatine L œuf des amphibiens se caracterise par la presence d une couverture gelatineuse transparente secretee par les oviductes et composee de et des glycosaminoglycanes Cette capsule est permeable a l eau et aux gaz et sa taille augmente considerablement a mesure qu elle absorbe de l eau L ovule est d abord maintenu solidement a l interieur mais dans les œufs fecondes la couche la plus interne se liquefie et permet a l embryon de se deplacer librement C est egalement le cas pour les œufs de salamandre meme quand ils ne sont pas encore fecondes Les œufs de certaines salamandres et ceux des grenouilles contiennent une algue verte unicellulaire Celle ci penetre dans l enveloppe gelee apres que les œufs sont pondus et peut ameliorer l apport d oxygene a l embryon grace a sa photosynthese Elle semble a la fois accelerer le developpement des larves et reduire leur mortalite La plupart des œufs contiennent de la melanine un pigment qui augmente leur temperature grace a l absorption de la lumiere et les protege contre le rayonnement ultraviolet Les cecilies certaines salamandres et les grenouilles de la famille des Plethodontidae qui pondent leurs œufs sous terre ont des œufs non pigmentes Chez la Grenouille des bois Rana sylvatica l interieur de l amas globulaire de l œuf a une temperature superieure de jusqu a 6 C a celle de son environnement dans la partie la plus septentrionale de son aire de repartition Les œufs peuvent etre deposes individuellement ou par plusieurs voire en importants amas d œufs spheriques pouvant former des radeaux ou de longues chaines Chez les cecilies terrestres les œufs sont pondus en grappes dans des terriers pres des ruisseaux La salamandre amphibie Ensatina attache des grappes similaires a tiges ou des racines sous l eau Eleutherodactylus planirostris pond ses œufs en petits amas dans le sol ou ils se developpent en environ deux semaines pour donner directement des grenouilles juveniles qui ne passent pas par le stade de larves Physalaemus pustulosus construit un nid flottant en mousse pour proteger ses œufs Elle commence par batir le radeau puis pond ses œufs au centre et les recouvre d un bouchon en mousse La mousse a des proprietes anti microbiennes Elle est creee par emulsion de proteines et de lectines secretees par la femelle Le crapaud Pipa pipa incube les œufs enfonces dans le dos de la femelle Larves Premiers stades du developpement de l embryon de la Grenouille rousse Rana temporaria Les œufs des amphibiens sont generalement pondus dans l eau et les larves qui en eclosent completent leur developpement dans l eau et se transforment plus tard en adultes aquatiques ou terrestres Chez certaines especes de grenouilles et la plupart des salamandres sans poumons Plethodontides il n y a pas de stade larvaire apparent Les larves se developpent dans les œufs et emergent sous la forme d adultes miniatures De nombreuses cecilies et certains autres amphibiens pondent leurs œufs sur terre et la larve nouvellement eclose se tortille jusqu a un point d eau ou y est transportee Certaines cecilies la Salamandre noire Salamandra atra et certaines especes de Nectophrynoides sont vivipares Leurs larves se nourrissent de secretions glandulaires et se developpent dans l oviducte de la femelle souvent pendant de longues periodes D autres amphibiens en dehors des cecilies sont ovovivipares Les œufs sont conserves a l interieur ou sur le corps de la mere mais les larves se nourrissent du vitellus de l œuf sans recevoir aucune nourriture de l adulte Les larves emergent a differents stades de leur croissance que ce soit avant ou apres la metamorphose selon l espece Les crapauds du genre Nectophrynoides presentent l ensemble de ces modeles de developpement parmi sa douzaine de representants Anoures Les larves des anoures sont connues sous le nom de tetards Ceux ci ont une forme generalement ovale et longue une queue aplatie a la verticale et munie de nageoires Les larves sont normalement entierement aquatiques mais les tetards de certaines especes telles que Nannophrys ceylonensis sont semi terrestres et vivent parmi les rochers humides Les tetards ont un squelette cartilagineux des branchies pour la respiration branchies externes puis branchies internes au fur et a mesure de leur developpement une ligne laterale et une grande queue qu ils utilisent pour nager A l eclosion les tetards developpent rapidement des poches branchiales qui couvrent les branchies Les poumons se developpent tot et sont utilises comme organes respiratoires accessoires les tetards remontant a la surface de l eau pour respirer a l air libre Certaines especes achevent leur developpement a l interieur de l œuf et eclosent sous la forme de petites grenouilles Dans ce cas les animaux juste eclos ne disposent pas de branchies mais de regions de la peau tres specialisees par lesquelles la respiration a lieu Alors que les tetards n ont pas de veritables dents chez la plupart des especes les machoires presentent de longues rangees paralleles de petites structures keratinisees appelees keradonts entoures d un bec corne Les pattes avant se forment sous les sacs branchiaux et les pattes arriere deviennent visibles quelques jours plus tard Les tetards sont generalement herbivores se nourrissant principalement d algues y compris de diatomees filtrees dans l eau par les branchies Ils sont aussi detritivores et ils remuent les sediments au fond de l eau pour en degager de petits fragments de matieres comestibles Ils ont un intestin suffisamment long en forme de spirale pour digerer ces aliments Certaines especes sont carnivores des le stade larvaire et le tetard mange des insectes d autres tetards plus petits et des poissons Les tetards de la Rainette de Cuba Osteopilus septentrionalis peuvent pratiquer le cannibalisme les jeunes tetards attaquant un tetard plus grand alors qu il est en pleine metamorphose Etapes successives du developpement du tetard du Crapaud commun Bufo bufo se terminant par la metamorphose Lors de la metamorphose on observe des changements rapides et radicaux dans la morphologie et le mode de vie des grenouilles La bouche en forme de spirale avec ses dents cornees se resorbe avec l intestin en spirale L animal developpe une grande machoire et ses branchies et leurs sacs branchiaux disparaissent Les yeux et les pattes se developpent rapidement et une langue apparait Le systeme nerveux evolue en consequence et on observe le developpement de la vision stereoscopique et la perte de la ligne laterale Tout cela peut se produire en l intervalle d une journee environ Quelques jours plus tard la queue se resorbe Urodeles Larve de Salamandre a longs doigts Ambystoma macrodactylum Larve de Triton alpestre Ichthyosaura alpestris A l eclosion la larve de salamandre presente generalement des yeux depourvus de paupieres des dents aux machoires inferieure et superieure trois paires de branchies externes plumeuses un corps un peu aplati lateralement et une longue queue avec des nageoires dorsales et ventrales Les membres anterieurs peuvent etre partiellement developpes et les membres posterieurs sont rudimentaires chez les especes vivant en eau stagnante mais peuvent etre un peu plus developpes chez les especes qui se reproduisent dans de l eau en mouvement Les larves des especes se reproduisant en etang ont souvent une paire d equilibreurs des elements en forme de tiges places de chaque cote de la tete qui evitent aux branchies d etre obstruees par des sediments Les larves de certains membres des genres des Ambystoma et des Dicamptodon ne se metamorphosent jamais completement et conservent des caracteristiques larvaires La Salamandre foncee Ambystoma gracile est dans ce cas et en fonction de facteurs environnementaux elle peut rester en permanence a l etat larvaire phenomene appele neotenie ou se transformer en adulte Dans les deux cas l espece est en mesure de se reproduire La neotenie se produit lorsque la croissance de l animal est tres faible et est generalement liee a des conditions defavorables telles qu une temperature basse de l eau qui peuvent alterer la reponse des tissus a la thyroxine Le manque de nourriture le manque d oligo elements et la concurrence importante des congeneres peuvent egalement inhiber la metamorphose La Salamandre tigree Ambystoma tigrinum se comporte parfois aussi de cette facon La Salamandre tigree adulte est terrestre mais la larve est aquatique et est capable de se reproduire tout en restant dans son etat larvaire Lorsque les conditions sont particulierement inhospitaliere sur terre cette reproduction des larves peut permettre la survie d une population qui autrement se serait eteinte Il y a une quinzaine d especes de salamandres completement neoteniques dont les especes des genres Necturus Proteus et Amphiuma et on compte de nombreux exemples d especes neoteniques facultatives qui adoptent cette strategie dans des conditions environnementales particulieres Les salamandres sans poumons de la famille des Plethodontidae sont terrestres et pondent un petit nombre d œufs non pigmentes parmi les feuilles mortes humides Chaque œuf possede un important vitellus et la larve s en nourrit et se developpe a l interieur de l œuf emergeant apres sa metamorphose sous la forme d une salamandre juvenile La salamandre femelle couve souvent les œufs Dans le genre Ensatina la femelle a ete observee appuyant sa gorge contre eux les massant avec une secretion de mucus Chez les tritons et les salamandres la metamorphose est moins spectaculaire que chez les grenouilles En effet les larves sont carnivores comme les adultes et peu de changements sont donc necessaires pour leur systeme digestif Leurs poumons sont fonctionnels des l eclosion mais les larves ne les utilisent pas autant que le font les tetards Leurs branchies ne sont jamais couvertes par de sacs branchiaux et se resorbent juste avant que les animaux ne sortent de l eau Lors de la metamorphose les nageoires de leur queue se reduisent voire disparaissent leurs fentes branchiales se ferment leur peau s epaissit des paupieres apparaissent et on observe egalement des changements au niveau de la dentition et de la structure de la langue Les salamandres sont tres vulnerables au moment de la metamorphose car leur vitesse de nage est reduite et leur grande queue est encombrante sur terre Les salamandres adultes ont souvent une phase aquatique au printemps et en ete et une phase terrestre en hiver Pour s adapter successivement a ces deux modes de vie elles subissent quelques modifications hormonales la prolactine est produite pour se preparer a la vie aquatique quand la thyroxine est associee a la vie sur terre Les branchies externes ne sont pas utilisees lors des phases aquatiques car celles ci sont completement resorbees lorsque les animaux sortent de l eau pour la premiere fois Cecilies La cecilie Ichthyophis glutinosus avec ses œufs et un embryon La plupart des cecilies terrestres qui pondent des œufs le font dans des terriers ou des endroits humides pres de plans d eau Le developpement du jeune Ichthyophis glutinosus une espece originaire du Sri Lanka a ete etudie en detail Les larves ressemblent a des anguilles a leur eclosion et se trainent jusqu a un point d eau Elles ont trois paires de branchies plumeuses rouges une tete emoussee avec deux yeux rudimentaires une ligne laterale et une queue courte avec des nageoires Elles nagent en faisant onduler leur corps Ces larves surtout actives la nuit perdent leurs branchies et commencent alors a sortir sur la terre ferme La metamorphose est progressive A l age d environ dix mois cette cecilie a une tete pointue avec des tentacules sensorielles pres de la bouche et a perdu ses yeux sa ligne laterale et sa queue La peau s epaissit les ecailles qui lui sont integrees se developpent et le corps se divise en segments L animal se construit alors un terrier et vit exclusivement sur terre La majorite des especes de cecilies sont vivipares Typhlonectes compressicauda une espece d Amerique du Sud en est un exemple typique Jusqu a neuf larves peuvent se developper dans l oviducte simultanement Elles sont allongees et ont des branchies en forme de sac de petits yeux et des dents specialisees pour racler Dans un premier temps ils se nourrissent a partir de leur vitellus mais au fur et a mesure que cette source de nourriture diminue ils commencent a raper les cellules epitheliales ciliees qui tapissent l oviducte Cela stimule la secretion de substances riches en lipides et mucoproteines dont ils se nourrissent par la paroi de l oviducte Les larves peuvent voir leur longueur multipliee par six et mesurent alors les deux cinquiemes de la longueur de leur mere Lorsqu elles sortent de l oviducte elles ont subi leur metamorphose ont perdu leurs yeux et leurs branchies ont developpe une peau plus epaisse et des tentacules sur la bouche et leurs dents ont disparu Des dents permanentes vont croitre peu apres la naissance Siphonops annulatus a developpe une adaptation unique pour se reproduire La progeniture se nourrit d une couche de peau specialement developpee a cette fin par l adulte dans un phenomene connu sous le nom de dermatophagie maternelle Les larves se nourrissent ensemble et devorent la couche cellulaire en approximativement sept minutes et attendent ensuite trois jours qu elle se regenere Pendant ce temps ils se nourrissent de fluides produits par le cloaque maternel Les soins parentaux Male Colostethus panamensis transportant ses tetards sur son dos Les soins parentaux chez les amphibiens sont mal connus mais en general plus le nombre d œufs pondus est important moins il est probable que les parents se preoccupent de leur progeniture Neanmoins on estime que pour environ 20 des especes d amphibiens un ou les deux parents jouent un role dans l elevage des jeunes Les especes qui se reproduisent dans les petits plans d eau ou dans des habitats specialises ont tendance a developper des comportements plus evolues dans les soins donnes aux jeunes La plupart des salamandres vivant dans les bois pondent leurs œufs a terre sous du bois mort ou une pierre C est le cas de Desmognathus welteri une salamandre qui couve ses œufs et les protege contre les predateurs tandis que les jeunes se nourrissent du vitellus Lorsqu ils sont pleinement operationnels les jeunes se frayent un chemin hors du nid et se dispersent Chez le Menopome une salamandre primitive le male creuse un nid sous l eau et encourage les femelles a y pondre Le male protege ensuite le site pendant les deux ou trois mois qui precedent l eclosion des œufs et assure leur approvisionnement en oxygene en agitant l eau autour du nid Male Alyte accoucheur Alytes obstetricans transportant des œufs Le male Colostethus subpunctatus une petite grenouille protege ses œufs qui sont caches sous une pierre ou des feuilles mortes Quand les œufs eclosent le male transporte les tetards sur son dos sur lequel ils tiennent grace a une secretion de mucus vers une mare ou il se plonge et laisse les tetards tomber Le male Alyte accoucheur Alytes obstetricans attache des grappes d œufs autour de ses cuisses et les porte ainsi pendant environ huit semaines Il les garde humides et quand ils sont prets a eclore il se rend dans un etang ou un fosse et libere les tetards Chez les grenouilles du genre Rheobatrachus la femelle elevait les larves dans son estomac apres avoir ingurgite les œufs ou les petits juste eclos Toutefois on n a jamais pu observer ce phenomene avant que ces especes ne soient eteintes Les tetards secretaient une hormone qui inhibait la digestion chez la mere pendant qu ils se developpaient en consommant leur large vitellus Assa darlingtoni pond ses œufs sur le sol Quand ils eclosent le male porte les tetards dans des sortes de poches situees au niveau de ses pattes de derriere Le Crapaud du Surinam Pipa pipa est une espece aquatique qui eleve ses petits dans les pores sur son dos ou ils demeurent jusqu a la metamorphose Oophaga granulifera est une espece caracteristique des grenouilles arboricoles venimeuses de la famille des Dendrobatidae Ses œufs sont pondus sur le sol de la foret et quand ils eclosent les tetards sont emportes un a un sur le dos d un adulte vers une crevasse remplie d eau a la base d une feuille ou au cœur de la rosette de bromeliacees La femelle se rend dans les sites ou se developpent les jeunes et y depose regulierement des œufs non fecondes qui sont consommes par les tetards AlimentationSalamandre foncee Ambystoma gracile mangeant un ver A quelques exceptions pres les amphibiens adultes sont carnivores se nourrissant de presque tout ce qui bouge qu ils sont en mesure d avaler Leur regime alimentaire se compose essentiellement de petites proies peu rapides comme les coleopteres les chenilles les vers de terre et les araignees Les especes du genre Siren ingerent souvent des plantes aquatiques en meme temps que les invertebres dont ils se nourrissent et la grenouille arboricole bresilienne Xenohyla truncata inclut une grande quantite de fruits dans son regime alimentaire Le crapaud mexicain Rhinophrynus dorsalis possede une langue specialement adaptee pour attraper les fourmis et les termites Les amphibiens reperent leurs proies la plupart du temps par la vue meme par faible luminosite Ce sont notamment les mouvements de la proie qui declenchent l attaque de la grenouille Ainsi on peut capturer des grenouilles avec un morceau de tissu rouge accroche a un hamecon et on a retrouve dans l estomac de grenouilles vertes Lithobates clamitans des graines d orme qu elles avaient vu flotter Les crapauds les salamandres et les cecilies peuvent egalement utiliser leur odorat pour detecter leurs proies L odorat demeure toutefois secondaire des salamandres ont ete observees immobiles pres d une proie sans la sentir ne la reperant que lorsqu elle bouge Les amphibiens troglodytes chassent principalement grace a leur odorat Les amphibiens avalent leur nourriture entiere la machant parfois legerement pour l engloutir Ils ont de petites dents articulees sur des pedicelles une caracteristique propre aux amphibiens La base et le sommet de ces dents sont composes de dentine et sont separes par une couche non calcifie Par ailleurs ces dents sont remplacees regulierement Les salamandres les grenouilles et quelques cecilies ont une ou deux rangees de dents dans les deux machoires mais certaines grenouilles les especes du genre Rana n ont pas de dents a la machoire inferieure et les crapauds geants genre Bufo sont eux depourvus de dentition Chez de nombreux amphibiens on trouve aussi des dents vomeriennes attachees a un os au niveau de la voute du palais Grenouille comestible Pelophylax esculentus faisant acte de cannibalisme La Salamandre tigree Ambystoma tigrinum adopte un comportement typique des grenouilles et des salamandres se cachant sous le couvert en attendant le passage d un invertebre imprudent D autres amphibiens tels que les crapauds du genre Bufo recherchent activement leurs proies tandis que la Grenouille cornue d Argentine Ceratophrys ornata attire ses proies en levant ses pattes de derriere au dessus de son dos et faisant vibrer ses orteils jaunes Parmi les grenouilles vivant dans les litieres de feuilles au Panama les grenouilles qui chassent activement ont une bouche etroite et sont minces arborent souvent de couleurs vives et sont toxiques tandis que celle qui attendent en embuscade ont une large bouche et sont plus grosses et bien camouflees Les cecilies ne peuvent pas lancer leur langue mais attrapent leurs proies grace a leurs dents pointues et orientees vers l arriere Les mouvements de la machoire et ceux de la proie qui se debat contribuent a diriger celle ci petit a petit vers l estomac de l animal qui se retire dans son terrier pour finir de l avaler entiere Les larves de grenouilles juste ecloses se nourrissent du vitellus Lorsque celui ci est epuise elles se nourrissent de bacteries d algues de detritus et de fragments de plantes submergees L eau est aspiree par la bouche et filtree au niveau des branchies ou les particules fines sont piegees dans le mucus Certains ont des pieces buccales specialisees composees d un bec corne borde par plusieurs rangees de dents labiales Ils grattent et mordent la nourriture de toutes sortes et remuent les sediments au fond de l eau filtrant les grosses particules avec leurs papilles situees autour de la bouche Certains comme ceux des crapauds de la famille des Scaphiopodidae ont de puissantes machoires et sont carnivores voire cannibales CriMale Dendropsophus microcephalus gonflant sa gorge en chantant Les cris des cecilies et des salamandres sont limites a des grincements des grognements doux ou des sifflements et n ont pas ete beaucoup etudies Les cecilies emettent un cliquetis qui est peut etre utilise pour s orienter a la facon des chauves souris ou constitue une forme de communication La plupart des salamandres sont considerees comme n emettant aucun bruit mais la salamandre Dicamptodon ensatus a des cordes vocales et peut produire un cliquetis ou aboyer Certaines especes de salamandre poussent un petit cri aigu ou glapissent lorsqu elles sont attaquees Les grenouilles sont beaucoup plus bruyantes surtout pendant la saison de reproduction lorsque les males utilisent leur voix pour attirer les femelles La presence d une espece particuliere dans une region est parfois plus facilement identifiee par son cri caracteristique que par la vue de l animal lui meme Chez la plupart des especes le son est produit par expulsion de l air des poumons a travers les cordes vocales vers un ou plusieurs sacs gulaires situes au niveau de la gorge ou dans le coin de la bouche Ce sac peut se distendre comme un ballon et agit comme un resonateur en aidant a transmettre le son vers l atmosphere ou l eau lorsque l animal est immerge Le cri le mieux connu est le bruyant chant du male qui vise a attirer les femelles mais egalement decourager les autres males de penetrer sur son territoire Ce chant devient plus discret lors de la seduction d une femelle s approchant et plus agressif si un intrus male approche Ce chant risque d attirer les predateurs et implique une forte depense d energie La femelle chante en reponse a l appel du male Quand une grenouille est attaquee elle emet un cri de detresse ou de peur Osteopilus septentrionalis une rainette generalement nocturne chante lorsqu il pleut pendant la journee Comportement territorialOn connait mal le comportement territorial des cecilies mais certaines grenouilles et les salamandres defendent leurs domaines vitaux ou elles s alimentent et se reproduisent Ce sont principalement les males qui presentent un tel comportement mais chez certaines especes les femelles et les jeunes sont impliques Chez de nombreuses especes de grenouilles les femelles sont plus grandes que les males mais ce n est pour les especes ou les males defendent activement leur territoire Certains d entre eux possedent des adaptations specifiques telles que des dents plus grandes ou des epines sur la poitrine les bras ou les doigts La Salamandre cendree Plethodon cinereus defend son territoire face aux intrus Les salamandres defendent leur territoire en adoptant une posture agressive et en attaquant l intrus si necessaire en le poursuivant le chassant et parfois le mordant ce qui peut parfois engendrer la perte de sa queue Le comportement de la Salamandre cendree Plethodon cinereus a ete etudie tout particulierement Ainsi suivant l etude 91 des individus de cette espece marques et repris par la suite etaient situes a moins d un metre de leur lieu de capture initiale Une proportion semblable d animaux qui ont ete deplaces a une distance de 30 metres de leur lieu de capture ont retrouve leur chemin pour retourner a leur base Les salamandres laissent des marques odorantes autour de leurs territoires qui mesurent en moyenne de 0 16 a 0 33 metre carre et sont habites par un couple Il s agit de dissuader l intrusion d intrus et de delimiter les frontieres entre territoires Une grande partie du comportement de ces salamandres est stereotype et semble ne faire appel a aucun contact reel entre individus Il lui arrive de prendre une posture agressive en soulevant son corps au dessus du sol et regardant fixement son adversaire qui souvent se detourne docilement Si l intrus persiste la salamandre mord l intrus au niveau de la queue ou a la region nasolabiale Chez les grenouilles le male a un comportement territorial souvent observe dans des lieux de reproduction Son chant est a la fois l annonce de sa presence sur le territoire pour d eventuels concurrents mais aussi un appel aux femelles En general un chant plus grave correspond a une grenouille plus grosse ce qui peut etre suffisant pour empecher l intrusion de petits males Ce chant demande beaucoup d energie et le detenteur d un territoire s epuise donc ce qui peut le handicaper en cas de lutte face a un concurrent Generalement les males ont tendance a tolerer les detenteurs de territoires voisins mais s attaquent vigoureusement aux intrus inconnus Les detenteurs de territoires ont l avantage du terrain en cas de lutte et remportent generalement les luttes entre des grenouilles de tailles similaires Si les menaces sont insuffisantes les grenouilles s empoignent poitrine contre poitrine Les grenouilles se battent en se bousculant degonflant le sac gulaire de leur adversaire le saisissant par la tete lui sautant sur le dos le mordant ou l eclaboussant Mecanismes de defenseCrapaud buffle Rhinella marina avec des glandes empoisonnees derriere les yeux Les amphibiens ont un corps mou et la peau fine et comme ils sont demunis de griffes de carapace ou d epines ils semblent relativement impuissants Neanmoins ils ont developpe divers mecanismes de defense pour se proteger La premiere defense des salamandres et des grenouilles est le mucus qu elles produisent Il maintient leur peau humide et les rend glissantes et difficiles a saisir La secretion est souvent collante et peut avoir une odeur desagreable ou etre toxique Des serpents ont ete observes baillant et ouvrant la gueule en tentant d avaler des Xenopus laevis offrant aux grenouilles une occasion de s echapper Les cecilies ont ete peu etudiees a ce sujet mais Typhlonectes compressicauda produit un mucus toxique mortel pour les poissons predateurs comme l a montre une experimentation au Bresil Chez certaines salamandres la peau est toxique Le Triton rugueux Taricha granulosa d Amerique du Nord et d autres membres du meme genre produisent la neurotoxine tetrodotoxine TTX la substance non proteique la plus toxique connue presque identique a celle produite par le poisson globe La manipulation de ces tritons n est pas dangereuse mais l ingestion d une portion meme infime de la peau est mortelle Les poissons les grenouilles les reptiles les oiseaux et les mammiferes ont tous ete reveles sensibles a ce poison Les seuls predateurs qui tolerent le poison sont certaines populations de Couleuvre rayee Thamnophis sirtalis Dans les lieux ou ce serpent et le triton coexistent les serpents ont developpe une immunite genetique et ils se nourrissent des amphibiens sans risque Certaines grenouilles et les crapauds sont toxiques les principales glandes a venin etant situees sur le cote du cou et sous les verrues du dos Ces regions sont celles susceptibles d etre attaquees par un predateur en priorite et leurs secretions peut donner un gout desagreable ou provoquer divers symptomes physiques ou neurologiques Au total plus de 200 toxines ont ete isolees parmi les especes d amphibiens qui ont ete etudiees La Salamandre tachetee Salamandra salamandra une espece toxique revet des couleurs bien caracteristiques Le Phyllobate terrible Phyllobates terribilis peut etre l une des especes animale les plus toxiques au monde est endemique de Colombie Les especes veneneuses revetent souvent des couleurs vives pour avertir les predateurs potentiels de leur toxicite Ces couleurs sont generalement le rouge ou le jaune combine avec le noir la Salamandre tachetee Salamandra salamandra en est un exemple Une fois qu un predateur a eu affaire a l un d eux il lui est facile de se rappeler sa coloration et il se ravisera la prochaine fois qu il rencontrera un animal semblable Chez certaines especes comme les Crapauds sonneurs genre Bombina la coloration d avertissement est placee sur le ventre et ces animaux adoptent une pose defensive en cas d attaque presentant leurs couleurs vives au predateur La grenouille Allobates zaparo n est pas toxique mais imite l apparence d autres especes toxiques partageant son aire de repartition une strategie qui peut tromper les predateurs De nombreux amphibiens sont nocturnes et se cachent pendant la journee evitant ainsi des predateurs diurnes qui chassent a vue D autres amphibiens utilisent le camouflage pour eviter d etre detectes Ils adoptent des colorations diverses comme le brun tachete le gris et l olive et se fondent dans le paysage environnant Certaines salamandres adoptent une posture defensive face a un predateur potentiel comme la Grande musaraigne Blarina brevicauda Elles tordent leur corps et font fouetter leur queue ce qui rend difficile pour le predateur d eviter le contact avec leurs glandes productrices de poison Quelques salamandres pratiquent l autotomie perdant leur queue lorsqu elles sont attaquees sacrifiant cette partie du corps pour leur permettre de s echapper La queue peut alors presenter un retrecissement a sa base pour lui permettre d etre facilement detachee Elle se regenere par la suite mais au prix d une importante depense en energie pour l animal Certaines grenouilles et les crapauds se gonflent pour paraitre plus imposants et certains crapauds du genre Pelobates crient et sautent vers le predateur pour l impressionner et le repousser Les salamandres geantes du genre Andrias ainsi que certaines grenouilles de la sous famille des Ceratophryinae et du genre des Pyxicephalus possedent des dents pointues et sont capables de mordre leur adversaire jusqu au sang La salamandre Desmognathus quadramaculatus peut mordre un serpent Thamnophis sirtalis deux ou trois fois plus grand qu elle au niveau de la tete et reussit souvent a s echapper PhylogenieEvolution des vertebres selon un diagramme axial representant les cinq grandes classes poissons amphibiens reptiles oiseaux et mammiferes La largeur des axes indique le nombre de familles dans chaque classe les teleosteens poissons a squelette completement osseux et a nageoires rayonnantes representent 99 8 des especes de poissons et pres de la moitie des especes de vertebres En classification phylogenetique seuls les oiseaux et les mammiferes sont des groupes monophyletiques L apparition des amphibiens Les premiers tetrapodomorphes apparaissent par la terrestrialisation d un poisson sarcopterygien au cours du Devonien il y a au moins 370 millions d annees Les nageoires d un poisson sarcopterygien apparente aux dipneustes modernes evoluent pour devenir semblables a des pattes munies de doigts leur permettant de ramper sur les fonds marins Certains de ces poissons developpent des poumons primitifs pour les aider a respirer a l air libre dans les eaux stagnantes des marais du Devonien tres peu pourvues en oxygene Ils peuvent egalement utiliser leurs nageoires puissantes pour se hisser hors de l eau si les circonstances l exigent Finalement leurs nageoires osseuses finissent d evoluer pour former de veritables pattes que l on retrouve par la suite chez l ensemble des tetrapodes aujourd hui definis comme etant le groupe couronne des especes actuelles dont les amphibiens modernes les reptiles les oiseaux et les mammiferes Meme s ils sont capables de ramper sur la terre beaucoup de ces poissons prehistoriques passent le plus clair de leur temps dans l eau s ils ont commence a developper des poumons il respirent encore principalement par les branchies Les precurseurs des tetrapodes sont les stegocephales Leurs traces ont ete decouvertes notamment sur la cote est du Groenland dans les couches fossiliferes datees du Devonien superieur Ils constituent un echelon intermediaire de l evolution car ils reunissent a la fois des caracteristiques des poissons osteichthyens et des amphibiens Comme les amphibiens actuels ils possedent quatre membres puissants et un cou mais une queue a nageoires et un crane tres similaire a celui des poissons sarcopterygiens comme Eusthenopteron Les stegocephales figurent probablement dans l ascendance des tous les tetrapodes modernes Diplocaulus un lepospondyle du Permien etait majoritairement aquatique Les tetrapodes ont developpe peu a peu un certain nombre d adaptations leur permettant de rester hors de l eau pendant de longues periodes Leurs poumons se sont ameliores et leur squelette est devenu de plus en plus robuste pour mieux supporter la gravite lorsqu ils etaient sur terre Ils se sont dotes de mains et de pieds avec cinq doigts ou plus leur peau est devenue capable de retenir les fluides corporels et de resister au dessechement L os des poissons situe dans la region de l os hyoide derriere les branchies a vu sa taille se reduire et est petit a petit devenu l etrier de l oreille des amphibiens une adaptation necessaire a l audition sur la terre ferme Les amphibiens ont par ailleurs des points communs avec les poissons teleosteens comme la structure multi pliee des dents et la paire d os supra occipital a l arriere de la tete ces caracteristiques n ayant ete observees chez nulle autre espece dans le regne animal A la fin du Devonien il y a 360 millions d annees les mers les fleuves et les lacs grouillent de vie La surface terrestre est toutefois encore peu pourvue en vertebres meme si les stegocephales peuvent brievement vivre hors de l eau On pense qu ils sortent de l eau grace a leurs membres anterieurs trainant leurs arriere train d une maniere similaire a l elephant de mer Au debut du Carbonifere il y a entre 360 et 345 millions d annees le climat devient chaud et humide De vastes marecages se developpent avec des mousses des fougeres des preles et des calamites Des arthropodes a respiration aerienne ont deja investi les continents et s y sont fortement propages fournissant une source de nourriture pour les tetrapodes carnivores qui commencent alors a s adapter a l environnement terrestre Les amphibiens et les reptiliomorphes sont alors au sommet de la chaine alimentaire detenant la niche ecologique actuellement C est a dire occupee par les crocodiliens Pourvus de membres et capable de respirer de l air la plupart ont encore un long corps effile et une queue puissante Les tetrapodes primitifs sont les premiers predateurs terrestres atteignant parfois plusieurs metres de longueur se nourrissant des gros insectes et de certains poissons Les membres robustes du temnospondyle Eryops peuvent soutenir son corps sur la terre ferme Les amphibiens developpent de nouveaux moyens de locomotion Dans l eau les mouvements lateraux de leur queue leur permettait de se propulser vers l avant mais sur la terre ferme des mecanismes tout a fait differents sont necessaires Leur colonne vertebrale leurs membres et leur musculature doivent etre suffisamment robustes pour que les animaux puissent se deplacer et s alimenter sur la terre ferme Les adultes ont developpe de nouveaux systemes sensoriels qui leur permettent de recevoir les stimuli exterieurs a l air libre aux depens de leur ligne laterale Ils developpent egalement de nouvelles methodes de regulation leur temperature corporelle malgre les fluctuations de la temperature ambiante Leur peau exposee desormais a des rayons ultraviolets nocifs qui etaient absorbes par l eau devient une couverture plus protectrice capable d eviter de trop fortes deperditions d eau Ils ont encore besoin de retourner a l eau pour pondre leurs œufs depourvus de coquille particularite qui caracterise toujours les amphibiens modernes qui conservent un stade larvaire aquatique avec une respiration par branchies comme leurs ancetres poissons A la fin du Carbonifere le developpement de l œuf amniotique empeche l embryon en developpement de se dessecher ce qui a permis aux premiers reptiles de se reproduire sur la terre ferme et a conduit a leur domination a partir du Permien Triadobatrachus massinoti une proto grenouille de Madagascar du Triassique superieur restitution par le paleoartiste Pavel Riha Au cours du Trias 250 a 200 millions d annees avant notre ere les reptiles supplantent les amphibiens ce qui conduit a une reduction de la taille de ces derniers et surtout a leur moindre importance dans la biosphere Selon les fossiles Lissamphibia qui comprend tous les amphibiens modernes et est la seule lignee survivante aurait derive des groupes disparus des Temnospondyli et Lepospondyli entre la fin du Carbonifere et le debut du Trias La relative rarete des fossiles empeche une datation plus precise mais une etude moleculaire de 2010 fondee sur plusieurs genes suggere que les amphibiens modernes seraient apparus vers la fin du Carbonifere ou au tout debut du Permien Frontieres du groupe des amphibiens Le nom de classe Amphibia et le terme amphibien sont derives de l adjectif amphibie qui provient lui meme du grec ancien ἀmfibios amphibios signifiant qui vit dans deux elements Classiquement cette classe regroupe tous les vertebres tetrapodes qui ne sont pas des amniotes mais possedant un stade larvaire les amphibiens sont le grade evolutif des tetrapodes dont les embryons ne sont pas proteges par un amnios En taxinomie classique ce groupe est divise en trois sous classes dont deux sont eteintes sous classe Lepospondyli peut etre paraphyletique du Carbonifere et debut du Permien sous classe Labyrinthodontia paraphyletique du Paleozoique et debut du Mesozoique ordre Ichthyostegalia paraphyletique ordre Temnospondyli peut etre paraphyletique ordre Reptiliomorpha paraphyletique sous classe Lissamphibia ordre Allocaudata Fox and Naylor 1982 Albanerpetontidae famille aux especes proches des grenouilles et salamandres ordre Anura Fischer von Waldheim 1813 du Jurassique a l ere actuelle 6 200 especes actuelles de crapauds et grenouilles ordre Caudata Fischer von Waldheim 1813 du Jurassique a l ere actuelle pres de 650 especes actuelles de tritons et salamandres ordre Gymnophiona Muller 1832 du Jurassique a l ere actuelle un peu moins de 200 especes actuelles de cecilies La phylogenie a fait tomber en desuetude le groupe des Labyrinthodontia qui s est avere paraphyletique et sans caractere commun a tous ses membres a l exception de caracteristiques primitives Les relations entre les differents groupes sont cependant difficiles a elucider sans fossiles cles Pour certains auteurs les lissamphibiens sont niches au sein des Temnospondyli Pour d autres comme Laurin ce dernier est exterieur aux tetrapodes et il faut alors definir le groupe des amphibiens comme incluant les animaux plus proches des lissamphibiens que des amniotes c est a dire comprenant le groupe paraphyletique des Lepospondyles ainsi que les amphibiens actuels les Lissamphibiens si l ancetre commun des amphibiens et des amniotes etait inclus dans les Amphibia celui ci deviendrait un groupe paraphyletique Deux des phylogenies en opposition presentees chez Wells 2007 Phylogenie partielle des tetrapodes traditionnelle Phylogenie partielle des tetrapodes selon Laurin et Reisz 1997 controverseeIchthyostega li ul li ul li ul li ul li ul li ul li ul li ul li ul li ul li ul li ul li ul li ul li ul Ichthyostega li ul li ul li ul li ul li ul li ul li ul li ul li ul li ul li ul li ul Les groupes marques d une etoile correspondent au groupe paraphyletique des Lepospondyles Origine des amphibiens actuels Le groupe particulier comprenant l ancetre de tous les amphibiens actuels et ses descendants est appele Lissamphibia La phylogenie des amphibiens du Paleozoique est incertaine et les Lissamphibia pourraient possiblement etre places dans d autres groupes eteints comme les Temnospondyli classiquement places parmi les Labyrinthodontia ou les Lepospondyli certaines etudes les placent meme aux cotes des amniotes Tout cela fait que la classification phylogenetique a enleve des Amphibia de la taxinomie linneenne un certain nombre de tetrapodes aux allures d amphibiens primitifs du Devonien et du Carbonifere Les origines des trois principaux groupes d amphibiens et leurs liens de parente sont sujets a debat Une etude sur la phylogenie de ces animaux de 2005 basee sur l analyse moleculaire d ADNr suggere que les salamandres et cecilies sont plus etroitement liees entre elles qu elles ne le sont aux grenouilles Il apparait egalement que la scission entre les trois groupes a eu lieu au cours du Mesozoique ou a la fin du Paleozoique il y a environ 250 millions d annees avant l eclatement de la Pangee et peu de temps apres leur divergence avec les poissons a nageoires lobees La brievete de cette periode et la rapidite avec laquelle le rayonnement des especes a eu lieu permettrait d expliquer la relative rarete des fossiles d amphibiens primitifs Il existe d importantes lacunes dans les fossiles retrouves mais la decouverte de Gerobatrachus une proto grenouille du debut du Permien decouverte au Texas en 1995 et decrite en 2008 presentant de nombreuses caracteristiques communes avec les grenouilles modernes a fourni un chainon manquant L analyse moleculaire suggere que la divergence entre grenouilles et salamandres a eu lieu beaucoup plus tot que les preuves paleontologiques ne l indiquent Cependant sa position est debattue Les travaux utilisant l horloge moleculaire de ces groupes ont obtenu des resultats assez varies Ils laissent a penser que la separation entre gymnophiones et batraciens au sens strict du terme groupe incluant urodeles et anoures date du Devonien superieur du Carbonifere superieur ou meme du Permien inferieur Le fossile le plus ancien qui appartient peut etre a ce groupe date du Permien inferieur mais sa position systematique est debattue Les plus anciens fossiles dont les affinites avec les amphibiens actuels ne sont pas contestees sont Triadobatrachus et Czatkobatrachus qui datent du Trias inferieur environ 250 millions d annees Phylogenie partielle des Amphibia selon Cannatella Tolweb 2007 Amphibia Batrachia Salientia Anura grenouilles et crapauds autres groupes proches li ul La sous classe des Lissamphibia forme probablement un clade et regroupe les trois ordres d amphibiens actuels les Anura les grenouilles et crapauds les Caudata ou Urodela les salamandres et tritons et les Gymnophiona ou Apoda les cecilies ainsi que d autres groupes eteints qui ne font pas partie d un ordre particulier certains Salientia primitifs comme Triadobatrachus ou Czatkobatrachus la famille des Albanerpetontidae qui est fortement apparentee aux Gymnophiona Il a ete suggere que les Caudata aient emerge separement des deux autres ordres depuis un ancetre aux allures de Temnospondyli ou meme que les Gymnophiona soient le groupe frere des Reptiliomorpha et donc des amniotes Bien que l on connaisse plusieurs anciens fossiles de proto grenouilles arborant des caracteres primitifs le plus ancien anoure vrai est Prosalirus bitis du Jurassique inferieur trouve dans la formation de Kayenta en Arizona La plus ancienne cecilie connue est une autre espece du Jurassique inferieur et egalement trouvee en Arizona Eocaecilia micropodia Le plus ancien Salamandroidea connu est Beiyanerpeton jianpingensis date du Jurassique superieur et a ete trouvee dans le nord est de la Chine Diversite actuelle Une etude de 2007 menee par Alford Richards et McDonald estime le nombre total des amphibiens entre 8 000 et 10 000 especes precisant que bon nombre d especes ne sont pas encore decouvertes Ainsi au debut les annees 1990 plus de 100 especes de grenouilles arboricoles de la famille des rhacophorides ont ete decouvertes sur l ile de Sri Lanka Ceci est d autant plus etonnant que bon nombre d especes decrites au XIX e siecle semble avoir disparu Si l on connait alors 5 000 especes de grenouilles les estimations de ces chercheurs indiquent qu un millier d especes sont encore inconnues 80 des especes connues vivent dans les regions tropicales l Amerique du Sud etant le foyer principal de cette biodiversite Alford Richards et McDonald soulignent egalement que des plus de 500 especes de salamandres connues un grand nombre vit en Amerique du Nord la famille des plethodontides qui se trouve en Amerique du Nord et du Sud rassemble plus de la moitie des salamandres connues Diversite des amphibiens Ordre Familles Genres EspecesAnoures 54 434 6 200Caudata 9 65 652Gymnophiona 10 34 192Total 73 533 7 044 Le nombre d especes actuelles de chaque groupe depend de la classification taxinomique suivie Deux principales existent pour le groupe des amphibiens La premiere est celle suivie par AmphibiaWeb site gere par l Universite de Californie Berkeley et la seconde celle maintenue par l herpetologiste Darrel Frost du museum americain d histoire naturelle disponible sur la base de donnees en ligne Amphibian Species of the World Selon Frost on denombre en tout plus de 7 000 especes d amphibiens actuels version 5 6 de janvier 2013 dont les anoures representent pres de 90 Les principaux groupes taxinomiques sont ainsi repartis DeclinBufo periglenes le crapaud dore de Monteverde Costa Rica fut parmi les premieres victimes du declin des amphibiens Autrefois abondante l espece n a pas ete revue depuis 1989 Article detaille Declin des populations d amphibiens Des baisses spectaculaires des populations d amphibiens dont des extinctions de masse localisees ont ete enregistrees depuis la fin des annees 1980 un peu partout dans le monde et le declin des amphibiens est percu comme etant l une des menaces les plus graves pour la biodiversite mondiale En 2006 on recensait 4 035 especes d amphibiens dependant de l eau a un moment donne au cours de leur cycle de vie Parmi celles ci 1 356 33 6 ont ete considerees comme menacees et ce chiffre est peut etre sous estime car il exclut 1 427 especes pour lesquelles il n y avait pas suffisamment de donnees pour evaluer leur situation Un certain nombre de causes sont impliquees comme notamment la destruction et la modification de l habitat de ces animaux la pollution les especes introduites le changement climatique les polluants perturbateurs du systeme endocrinien la destruction de la couche d ozone le rayonnement ultraviolet est particulierement dommageable pour la peau les yeux et les œufs d amphibiens et des maladies comme la chytridiomycose Ce declin massif est meme observe dans des zones isolees foret tropicale ou peu cultivees et montagneuses en Europe par exemple Suisse ou 9 especes sont sur la Liste rouge classees comme en danger critique d extinction Toutefois bon nombre des causes de declin des amphibiens sont encore mal comprises et elles sont un sujet de debat en cours On pensait que Discoglossus nigriventer avait disparu avant de redecouvrir cette espece en 2011 Avec leurs besoins complexes en matiere de reproduction et leur peau permeable les amphibiens sont souvent consideres comme de bons indicateurs ecologiques Dans de nombreux ecosystemes terrestres ils constituent une des plus grandes parties de la biomasse des vertebres Toute baisse du nombre d amphibiens aura un impact sur les habitudes de predation d autres especes qui pourraient etre impactees La perte d especes carnivores situees pres du sommet de la chaine alimentaire peut bouleverser l equilibre d un ecosysteme delicat et entrainer une augmentation spectaculaire des especes opportunistes Au Moyen Orient une demande croissante en cuisses de grenouilles pour la consommation humaine et la collecte importante de certains d entre eux a conduit a une augmentation du nombre de moustiques Les predateurs qui se nourrissent d amphibiens sont affectes par ce declin En Californie la Couleuvre de l Ouest Thamnophis elegans est essentiellement aquatique et depend fortement de deux especes d anoures qui sont en declin le crapaud Bufo canorus et la grenouille Rana muscosa et l avenir de ce serpent est donc lui aussi remis en question Si le serpent devenait rare cela pourrait affecter les populations d oiseaux de proie et d autres predateurs qui s en nourrissent Pendant ce temps dans les etangs et les lacs moins de grenouilles signifie moins de tetards Ceux ci jouent normalement un role important dans le controle de la croissance des algues et des detritus qui s accumulent dans les sediments au fond de l eau Une reduction du nombre de tetards peut conduire a une proliferation d algues ce qui entraine l epuisement de l oxygene dans l eau lorsque les algues se decomposent Les invertebres aquatiques et les poissons sont alors menaces et il y aurait des consequences ecologiques imprevisibles Une strategie globale pour endiguer ce declin a ete mise en place en 2005 sous la forme d un plan d action pour la conservation des amphibiens Developpe par plus de quatre vingt des plus grands experts dans le domaine cet appel recensait des actions qui seraient necessaires pour limiter le declin des amphibiens et les extinctions au cours des cinq annees suivantes et en estimait le cout L Amphibian Specialist Group de l Union mondiale pour la nature UICN est le fer de lance des efforts pour mettre en œuvre une strategie globale mondiale pour la conservation des amphibiens Amphibian Ark est un organisme qui a ete cree pour mettre en œuvre les recommandations de conservation ex situ de ce plan et cet organisme travaille avec les zoos et les aquariums du monde entier pour les encourager a creer des colonies d amphibiens menaces et en assurer ainsi la preservation au moins en captivite Parmi ses projets on note aussi la tentative de sauvetage des amphibiens de Panama qui s appuie sur les efforts de conservation en vigueur au Panama pour repondre a l echelle nationale a la menace de la chytridiomycose Notes et references en Cet article est partiellement ou en totalite issu de l article de Wikipedia en anglais intitule Amphibian voir la liste des auteurs a et b en D C Blackburn et D B Wake Class Amphibia Gray 1825 In Zhang Z Q Ed Animal biodiversity An outline of higher level classification and survey of taxonomic richness Zootaxa vol 3148 2011 p 39 55 lire en ligne Sebastien Steyer La Terre avant les dinosaures ed Belin 2009 p 94 95 En Colombie un labo contre les amphibiens mal acquis sur Liberation fr 23 decembre 2019 en Michel Laurin Terrestrial Vertebrates sur Tree of Life Web Project 2011 consulte le 16 septembre 2012 en Michel Laurin et Jacques A Gauthier Amniota sur Tree of Life Web Project 2012 consulte le 16 septembre 2012 a b c et d Dorit 1991 p 843 859 en James L Sumich et John F Morrissey Introduction to the Biology of Marine Life Jones amp Bartlett Learning 2004 449 p ISBN 978 0 7637 3313 1 lire en ligne p 171 Le plus petit vertebre du monde est une grenouille Le Point fr 12 janvier 2012 lire en ligne en Eric N Rittmeyer Allen Allison Michael C Grundler Derrick K Thompson et Christopher C Austin Ecological guild evolution and the discovery of the world s smallest vertebrate PLoS ONE vol 7 no 1 2012 e29797 PMID 22253785 PMCID 3256195 DOI 10 1371 journal pone 0029797 Quel est le plus grand amphibien actuel sur Futura science 25 septembre 2010 consulte le 29 janvier 2014 en Brent Nguyen et John Cavagnaro Amphibian Facts AmphibiaWeb juillet 2012 consulte le 11 septembre 2012 R R Schoch Comparative osteology of Mastodonsaurus giganteus Jaeger 1828 from the Middle Triassic Lettenkeuper Longobardian of Germany Baden Wurttemberg Bayern Thuringen Stuttgarter Beitrage zur Naturkunde Serie B vol 278 1999 p 1 175 lire en ligne Roland Bauchot Cassian Bon et Patrick David Serpents Editions Artemis 2005 p 76 Stebbins 1995 p 24 25 a b et c Stebbins 1995 p 3 en David Cannatella et Anna Graybeal Bufonidae True Toads sur Tree of Life Web Project 2008 consulte le 12 janvier 2012 en Frog fun facts American Museum of Natural History 12 janvier 2010 consulte le 29 aout 2012 en David Challenger World s smallest frog discovered in Papua New Guinea sur CNN com 12 janvier 2012 consulte le 29 aout 2012 a b c d e f et g en Nicholas Arnold et Denys Ovenden Reptiles and Amphibians of Britain and Europe Harper Collins Publishers 2002 13 18 p ISBN 978 0 00 219318 4 en J Faivovich C F B Haddad P C A Garcia D R Frost J A Campbell et W C Wheeler Systematic review of the frog family Hylidae with special reference to Hylinae Phylogenetic analysis and revision Bulletin of the American Museum of Natural History vol 294 2005 p 1 240 DOI 10 1206 0003 0090 2005 294 0001 SROTFF 2 0 CO 2 a et b en L S Ford et D C Cannatella The major clades of frogs Herpetological Monographs vol 7 1993 p 94 117 DOI 10 2307 1466954 en Diego San Mauro Miguel Vences Marina Alcobendas Rafael Zardoya et Axel Meyer Initial diversification of living amphibians predated the breakup of Pangaea American Naturalist vol 165 no 5 2005 p 590 599 PMID 15795855 DOI 10 1086 429523 en A Larson et W Dimmick Phylogenetic relationships of the salamander families an analysis of the congruence among morphological and molecular characters Herpetological Monographs vol 7 no 7 1993 p 77 93 DOI 10 2307 1466953 JSTOR 1466953 Losange2008 p 9 en David Baum Trait Evolution on a Phylogenetic Tree Relatedness Similarity and the Myth of Evolutionary Advancement Nature Education vol 1 2008 p 191 lire en ligne en David B Wake Thorius pennatulus AmphibiaWeb 8 novembre 2000 consulte le 25 aout 2012 en Max Sparreboom Andrias davidianus Chinese giant salamander AmphibiaWeb 7 fevrier 2000 consulte le 1er decembre 2012 Dorit 1991 p 852 Rudiger Wehner et Walter Gehring trad de l allemand Biologie et physiologie animales bases moleculaires cellulaires anatomiques et fonctionnelles Paris Bruxelles s l De Boeck Universite 1999 844 p ISBN 2 7445 0009 7 et 9782744500091 p 216 en Heather Heying Cryptobranchidae sur Animal Diversity Web University of Michigan 2003 consulte le 25 aout 2012 a et b en J Mayasich D Grandmaison et C Phillips Eastern Hellbender Status Assessment Report U S Fish and Wildlife Service 1er juin 2003 consulte le 25 aout 2012 a b et c en David B Wake Caudata sur Encyclopaedia Britannica Online Encyclopaedia Britannica consulte le 25 aout 2012 en H G Cogger et R G Zweifel Encyclopedia of Reptiles and Amphibians Academic Press 1998 69 70 p ISBN 978 0 12 178560 4 Stebbins 1995 p 4 Dorit 1991 p 858 en William E Duellman Gymnophiona sur Encyclopaedia Britannica Online Encyclopaedia Britannica consulte le 30 septembre 2012 en Louise Zylberberg et Marvalee H Wake Structure of the scales of Dermophis and Microcaecilia Amphibia Gymnophiona and a comparison to dermal ossifications of other vertebrates Journal of Morphology vol 206 no 1 1990 p 25 43 DOI 10 1002 jmor 1052060104 Roger Eckert trad de l anglais Physiologie animale mecanismes et adaptations Paris Bruxelles De Boeck Universite 1999 822 p ISBN 2 7445 0053 4 et 9782744500534 p 575 en Paul D N Hebert Amphibian morphology and reproduction sur Encyclopedia of Earth Biodiversity Institute of Ontario 12 octobre 2008 consulte le 15 aout 2012 Stebbins 1995 p 10 11 Losange 2008 p 12 en R I C Spearman The Integument A Textbook of Skin Biology Cambridge University Press 1973 208 p ISBN 978 0 521 20048 6 lire en ligne p 81 Biodiversite decouverte de la premiere grenouille fluorescente Futura Sciences 17 mars 2017 a b c et d Dorit 1991 p 846 a et b Stebbins 1995 p 26 36 Stebbins 1995 p 26 36 en John T Jr Beneski Adaptive significance of tail autotomy in the salamander Ensatina Journal of Herpetology vol 23 no 3 1989 p 322 324 DOI 10 2307 1564465 Dorit 1991 p 306 Stebbins 1995 p 100 Stebbins 1995 p 69 a et b en William E Duellman et George R Zug Amphibian sur Encyclopaedia Britannica Online Encyclopaedia Britannica 2012 consulte le 27 mars 2012 a b et c Dorit 1991 p 847 Stebbins 1995 p 66 Dorit 1991 p 849 Jacques Hourdry et Andre Beaumont Les metamorphoses des amphibiens Masson 1985 p 11 en Nikolay Natchev Nikolay Tzankov et Richard Geme Green frog invasion in the Black Sea habitat ecology of the Pelophylax esculentus complex Anura Amphibia population in the region of Shablenska Tuzla lagoon in Bulgaria Herpetology Notes vol 4 2011 p 347 351 lire en ligne en C Michael Hogan Abiotic factor sur Encyclopedia of Earth National Council for Science and the Environment 31 juillet 2010 consulte le 30 septembre 2012 Stebbins 1995 p 140 141 a et b en Willia E Duellman et Linda Trueb Biology of Amphibians JHU Press 1994 77 79 p ISBN 978 0 8018 4780 6 lire en ligne a et b Stebbins 1995 p 154 162 en Michael J Adams et Christopher A Pearl Ascaphus truei AmphibiaWeb 2005 consulte le 23 novembre 2012 en Sakae Kikuyama Kousuke Kawamura Shigeyasu Tanaka et Kakutoshi Yamamoto International Review of Cytology A Survey of Cell Biology San Diego Academic Press 1993 105 126 p ISBN 978 0 12 364548 7 lire en ligne Aspects of amphibian metamorphosis Hormonal control en Robert A Newman Adaptive plasticity in amphibian metamorphosis BioScience vol 42 no 9 1992 p 671 678 DOI 10 2307 1312173 JSTOR 1312173 en Perry W Gilbert Observations on the eggs of Ambystoma maculatum with especial reference to the green algae found within the egg envelopes Ecology vol 23 no 2 1942 p 215 227 DOI 10 2307 1931088 JSTOR 1931088 en Bruce Waldman et Michael J Ryan Thermal advantages of communal egg mass deposition in wood frogs Rana sylvatica Journal of Herpetology vol 17 no 1 1983 p 70 72 DOI 10 2307 1563783 JSTOR 1563783 en Walter E Jr Meshaka Eleutherodactylus planirostris AmphibiaWeb consulte le 12 decembre 2012 en Laura Dalgetty et Malcolm W Kennedy Building a home from foam tungara frog foam nest architecture and three phase construction process Biology Letters vol 6 no 3 2010 p 293 296 PMID 20106853 PMCID 2880057 DOI 10 1098 rsbl 2009 0934 en Proteins of frog foam nests School of Life Sciences University of Glasgow consulte le 24 aout 2012 en Donald W Linzey Vertebrate Biology Systematics Taxonomy Natural History and Conservation JHU Press 2020 p 137 Stebbins 1995 p 6 9 en Martha L Crump Amphibian diversity and life history Amphibian Ecology and Conservation A Handbook of Techniques 2009 p 3 20 lire en ligne en Peter Janzen Nannophrys ceylonensis AmphibiaWeb 10 mai 2005 consulte le 20 juillet 2012 en W E Duellman et G R Zug Anura From tadpole to adult sur Encyclopaedia Britannica Online Encyclopaedia Britannica consulte le 13 juillet 2012 Stebbins 1995 p 179 181 a et b en William E Duellman et George R Zug Anura sur Encyclopaedia Britannica Online Encyclopaedia Britannica 2012 consulte le 26 mars 2012 en Martha L Crump Cannibalism by younger tadpoles another hazard of metamorphosis Copeia vol 4 no 4 1986 p 1007 1009 DOI 10 2307 1445301 JSTOR 1445301 en Barry D Valentine et David M Dennis A comparison of the gill arch system and fins of three genera of larval salamanders Rhyacotriton Gyrinophilus and Ambystoma Copeia vol 1964 no 1 1964 p 196 201 DOI 10 2307 1440850 JSTOR 1440850 en H Bradley Shaffer Ambystoma gracile AmphibiaWeb 2005 consulte le 21 novembre 2012 en Robin R Kiyonaga Metamorphosis vs neoteny paedomorphosis in salamanders Caudata consulte le 21 novembre 2012 en William E Duellman et Linda Trueb Biology of Amphibians JHU Press 1994 191 192 p ISBN 978 0 8018 4780 6 lire en ligne Stebbins 1995 p 196 en H Bradley Shaffer C C Austin et R B Huey The consequences of metamorphosis on salamander Ambystoma locomotor performance Physiological Zoology vol 64 no 1 1991 p 212 231 JSTOR 30158520 en David B Wake Caudata sur Encyclopaedia Britannica Online Encyclopaedia Britannica 2012 consulte le 26 mars 2012 en W R Breckenridge S Nathanael et L Pereira Some aspects of the biology and development of Ichthyophis glutinosus Journal of Zoology vol 211 1987 p 437 449 en Marvalee H Wake Fetal maintenance and its evolutionary significance in the Amphibia Gymnophiona Journal of Herpetology vol 11 no 4 1977 p 379 386 DOI 10 2307 1562719 JSTOR 1562719 en William E Duellman Gymnophiona sur Encyclopaedia Britannica Online Encyclopaedia Britannica 2012 consulte le 26 mars 2012 en Mark Wilkinson Alexander Kupfer Rafael Marques Porto Hilary Jeffkins Marta M Antoniazzi et Carlos Jared One hundred million years of skin feeding Extended parental care in a Neotropical caecilian Amphibia Gymnophiona vol 4 no 4 2008 p 358 361 PMID 18547909 PMCID 2610157 DOI 10 1098 rsbl 2008 0217 en Martha L Crump Parental care among the Amphibia Advances in the Study of Behavior vol 25 1996 p 109 144 DOI 10 1016 S0065 3454 08 60331 9 en J L Brown V Morales et K Summers A key ecological trait drove the evolution of biparental care and monogamy in an amphibian American Naturalist vol 175 no 4 2010 p 436 446 PMID 20180700 DOI 10 1086 650727 Dorit 1991 p 853 854 en Maria Claudia Fandino Horst Luddecke et Adolfo Amezquita Vocalisation and larval transportation of male Colostethus subpunctatus Anura Dendrobatidae Amphibia Reptilia vol 18 no 1 1997 p 39 48 DOI 10 1163 156853897X00297 en Arie van der Meijden Alytes obstetricans AmphibiaWeb 18 janvier 2010 consulte le 29 novembre 2012 en E Semeyn Rheobatrachus silus sur Animal Diversity Web University of Michigan Museum of Zoology 2002 consulte le 5 aout 2012 en Jean Marc Hero John Clarke et Ed Meyer Assa darlingtoni sur IUCN Red List of Threatened Species Version 2012 2 2004 consulte le 20 novembre 2012 en Enrique La Marca Claudia Azevedo Ramos Debora Silvano Luis A Coloma Santiago Ron Jerry Hardy et Manfred Beier Pipa pipa Suriname Toad sur IUCN Red List of Threatened Species Version 2012 1 2010 consulte le 24 aout 2012 en Rene van Wijngaarden et Federico Bolanos Parental care in Dendrobates granuliferus Anura Dendrobatidae with a description of the tadpole Journal of Herpetology vol 26 no 1 1992 p 102 105 DOI 10 2307 1565037 JSTOR 1565037 en Jesse Gabbard Siren intermedia Lesser Siren sur Animal Diversity Web University of Michigan Museum of Zoology 2000 consulte le 11 aout 2012 en H R Da Silva et M C De Britto Pereira How much fruit do fruit eating frogs eat An investigation on the diet of Xenohyla truncata Lissamphibia Anura Hylidae Journal of Zoology vol 270 no 4 2006 p 692 698 DOI 10 1111 j 1469 7998 2006 00192 x en Linda Trueb et Carl Gans Feeding specializations of the Mexican burrowing toad Rhinophrynus dorsalis Anura Rhinophrynidae Journal of Zoology vol 199 no 2 1983 p 189 208 DOI 10 1111 j 1469 7998 1983 tb02090 x en W J Jr Hamilton The food and feeding behavior of the green frog Rana clamitans Latreille in New York State Copeia American Society of Ichthyologists and Herpetologists vol 1948 no 3 1948 p 203 207 DOI 10 2307 1438455 JSTOR 1438455 Stebbins 1995 p 56 Stebbins 1995 p 57 58 en Charles W Radcliffe David Chiszar Karen Estep et Murphy Observations on pedal luring and pedal movements in Leptodactylid frogs Journal of Herpetology vol 20 no 3 1986 p 300 306 DOI 10 2307 1564496 JSTOR 1564496 en Catherine A Toft Feeding ecology of Panamanian litter anurans patterns in diet and foraging mode Journal of Herpetology vol 15 no 2 1981 p 139 144 DOI 10 2307 1563372 JSTOR 1563372 en W E Bemis K Schwenk et M H Wake Morphology and function of the feeding apparatus in Dermophis mexicanus Amphibia Gymnophiona Zoological Journal of the Linnean Society vol 77 no 1 1983 p 75 96 DOI 10 1111 j 1096 3642 1983 tb01722 x Stebbins 1995 p 181 185 a et b Stebbins 1995 p 76 77 en Brian K Sullivan Sexual selection and calling behavior in the American toad Bufo americanus Copeia vol 1992 no 1 1992 p 1 7 DOI 10 2307 1446530 JSTOR 1446530 en L F Toledo et C F B Haddad When frogs scream A review of anuran defensive vocalizations Instituto de Biociencias Sao Paulo 2007 lire en ligne chap 4 en Steve A Johnson The Cuban Treefrog Osteopilus septentrionalis in Florida sur EDIS University of Florida 2010 consulte le 13 aout 2012 en Richard Shine Sexual selection and sexual dimorphism in the Amphibia Copeia vol 1979 no 2 1979 p 297 306 DOI 10 2307 1443418 JSTOR 1443418 a b et c en W F Gergits et R G Jaeger Site attachment by the red backed salamander Plethodon cinereus Journal of Herpetology vol 24 no 1 1990 p 91 93 DOI 10 2307 1564297 JSTOR 1564297 en Gary S Casper Plethodon cinereus AmphibiaWeb consulte le 25 septembre 2012 en K D Wells Territoriality and male mating success in the green frog Rana clamitans Ecology vol 58 no 4 1977 p 750 762 DOI 10 2307 1936211 JSTOR 1936211 a et b en G T Barthalmus et W J Zielinski Xenopus skin mucus induces oral dyskinesias that promote escape from snakes Pharmacology Biochemistry Behavior vol 30 no 4 1988 p 957 959 PMID 3227042 DOI 10 1016 0091 3057 88 90126 8 en John J Crayon Xenopus laevis AmphibiaWeb consulte le 8 octobre 2012 en G E E Moodie Observations on the life history of the caecilian Typhlonectes compressicaudus Dumeril and Bibron in the Amazon basin Canadian Journal of Zoology vol 56 no 4 1978 p 1005 1008 DOI 10 1139 z78 141 en Edmund D Jr Brodie Investigations on the skin toxin of the adult rough skinned newt Taricha granulosa Copeia vol 1968 no 2 1968 p 307 313 DOI 10 2307 1441757 JSTOR 1441757 en Charles T Hanifin Mari Yotsu Yamashita Takeshi Yasumoto Edmund D Brodie et Edmund D Jr Brodie Toxicity of dangerous prey variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa Journal of Chemical Ecology vol 25 no 9 1999 p 2161 2175 DOI 10 1023 A 1021049125805 en Shana L Geffeney Esther Fujimoto Edmund D Brodie Edmund D Jr Brodie et Peter C Ruben Evolutionary diversification of TTX resistant sodium channels in a predator prey interaction Nature vol 434 no 7034 2005 p 759 763 PMID 15815629 DOI 10 1038 nature03444 Stebbins 1995 p 110 en Jiri Patocka Krauff Wulff et MariaVictoria Palomeque Dart Poison Frogs and Their Toxins ASA Newsletter vol 5 no 75 1999 ISSN 1057 9419 lire en ligne en Catherine R Darst et Molly E Cummings Predator learning favours mimicry of a less toxic model in poison frogs Nature vol 440 no 7081 2006 p 208 211 PMID 16525472 DOI 10 1038 nature04297 en Edmund D Jr Brodie Robert T Nowak et William R Harvey Antipredator secretions and behavior of selected salamanders against shrews Copeia vol 1979 no 2 1979 p 270 274 DOI 10 2307 1443413 JSTOR 1443413 en John T Jr Beneski Adaptive significance of tail autotomy in the Salamander Ensatina Journal of Herpetology vol 23 no 3 1989 p 322 324 DOI 10 2307 1564465 JSTOR 156446 en E D Jr Brodie Biting and vocalisation as antipredator mechanisms in terrestrial salamanders Copeia vol 1978 no 1 1978 p 127 129 DOI 10 2307 1443832 JSTOR 1443832 Avec les cinq principaux clades representes Agnathes lamproies Chondrichthyens requins raies Placodermes fossiles Acanthodiens fossiles Osteichthyens poissons osseux Les poissons amphibiens et reptiles sont des groupes paraphyletiques Systematique ordonner la diversite du vivant Rapport sur la Science et la technologie N 11 Academie des sciences Lavoisier 2010 p 65 a b et c en Evolution of amphibians University of Waikato Plant and animal evolution consulte le 30 septembre 2012 a b et c en Robert L Carroll et Anthony Hallam Patterns of Evolution as Illustrated by the Fossil Record Elsevier 1977 405 420 p ISBN 978 0 444 41142 6 lire en ligne L apparition des tetrapodes aquatiques date de la fin du Devonien moyen dans une fourchette etroite comprise entre 375 et 380 Ma en Jennifer CLACK paleontologue a L universite de Cambridge Grande Bretagne Le premier pied a terre Pour la Science fevrier 2006 a et b en Jennifer A Clack Ichthyostega sur Tree of Life Web Project 2006 consulte le 29 septembre 2012 en R E Lombard et J R Bolt Evolution of the tetrapod ear an analysis and reinterpretation Biological Journal of the Linnean Society vol 11 no 1 1979 p 19 76 DOI 10 1111 j 1095 8312 1979 tb00027 x a b et c en J O I Spoczynska Fossils A Study in Evolution Frederick Muller Ltd 1971 208 p ISBN 978 0 584 10093 8 p 120 125 en D San Mauro A multilocus timescale for the origin of extant amphibians Molecular Phylogenetics and Evolution vol 56 no 2 2010 p 554 561 PMID 20399871 DOI 10 1016 j ympev 2010 04 019 a et b Wells 2007 p 10 11 fr M Laurin Systematique paleontologie et biologie evolutive moderne l exemple de la sortie des eaux des vertebres Paris Ellipses 2008 176 p ISBN 978 2 7298 3892 8 en B W Waggoner Speer Amphibia Systematics University of California Museum of Paleontology 1995 consulte le 13 decembre 2012 en Michel Laurin et Robert R Reisz A new perspective on tetrapod phylogeny dans S Sumida et K Martin Amniotes Origins Completing the Transition to Land Londres Academic Press 1997 lire en ligne p 9 59 en Diego San Mauro Miguel Vences Marina Alcobendas Rafael Zardoya et Axel Meyer Initial diversification of living amphibians predated the breakup of Pangaea The American Naturalist vol 165 no 5 2005 p 590 599 PMID 15795855 DOI 10 1086 429523 a b et c en J Anderson R Reisz D Scott N Frobisch et S Sumida A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders Nature vol 453 no 7194 2008 p 515 518 PMID 18497824 DOI 10 1038 nature06865 a et b en D Marjanovic et M Laurin The origin s of modern amphibians a commentary Evolutionary Biology vol 36 no 3 2009 p 336 338 DOI 10 1007 s11692 009 9065 8 en K Roelants D J Gower M Wilkinson S P Loader S D Biju K Guillaume L Moriau et F Bossuyt Global patterns of diversification in the history of modern amphibians Proceedings of the National Academy of Sciences of the United States of America vol 104 no 3 2007 p 887 892 en San Mauro D Vences M Alcobendas M Zardoya R amp Meyer A Initial diversification of living amphibians predated the breakup of Pangaea American Naturalist vol 165 no 5 2005 p 590 599 en Hugall A F Foster R Lee M S Y Calibration choice rate smoothing and the pattern of tetrapod diversification according to the long nuclear gene RAG 1 Systematic Biology vol 56 no 3 2007 p 543 563 DOI 10 1080 10635150701477825 en Marjanovic D Laurin M Fossils molecules divergence times and the origin of lissamphibians Systematic Biology vol 56 no 3 2007 p 369 388 DOI 10 1080 10635150701397635 en David Cannatella Living amphibians Tree of Life Web Project 2007 consulte le 14 aout 2012 en Z Rocek Chapter 14 Mesozoic Amphibians dans H Heatwole et R L Carroll Amphibian Biology Paleontology The Evolutionary History of Amphibians vol 4 Surrey Beatty amp Sons 2000 ISBN 978 0 949324 87 0 lire en ligne p 1295 1331 en Farish A Jenkins Jr Denis M Walsh et Robert L Carroll Anatomy of Eocaecilia micropodia a limbed caecilian of the Early Jurassic Bulletin of the Museum of Comparative Zoology vol 158 no 6 2007 p 285 365 DOI 10 3099 0027 4100 2007 158 285 AOEMAL 2 0 CO 2 en Ke Qin Gao et Neil H Shubin Late Jurassic salamandroid from western Liaoning China Proceedings of the National Academy of Sciences of the United States of America vol 109 no 15 2012 p 5767 5772 DOI 10 1073 pnas 1009828109 a b et c Alford Richards et McDonald 2007 en Darell Frost Amphibian Species of the World an Online Reference Version 5 6 9 January 2013 American Museum of Natural History 2013 consulte le 16 mars 2013 en Martha L Crump Amphibian diversity and life history Amphibian Ecology and Conservation A Handbook of Techniques 2009 p 3 20 lire en ligne en M L McCallum Amphibian decline or extinction Current declines dwarf background extinction rate Journal of Herpetology vol 41 no 3 2007 p 483 491 DOI 10 1670 0022 1511 2007 41 483 ADOECD 2 0 CO 2 lire en ligne en J M Hoekstra J L Molnar M Revenga C Jennings M D Spalding T M Boucher J C Robertson T J Heibel et K Ellison Number of Globally Threatened Amphibian Species by Freshwater Ecoregion sur The Atlas of Global Conservation Changes Challenges and Opportunities to Make a Difference The Nature Conservancy 2010 consulte le 5 septembre 2012 de Praxismerkblatter Artenschutz sur KARCH Suisse Bulletin sur les pratiques de conservation de la nature consulte le 6 septembre 2012 en Amphibian Specialist Group IUCN SSC Amphibian Specialist Group consulte le 30 mars 2012 en James Hardin Waddle Use of amphibians as ecosystem indicator species University of Florida 2006 lire en ligne en Henry A Regier et Gordon L Baskerville Sustainable redevelopment of regional ecosystems degraded by exploitive development DIANE Publishing 1996 36 38 p ISBN 978 0 7881 4699 2 lire en ligne Sustainability Issues for Resource Managers en W Bryan Jennings David F Bradford et Dale F Johnson Dependence of the garter snake Thamnophis elegans on amphibians in the Sierra Nevada of California Journal of Herpetology vol 26 no 4 1992 p 503 505 DOI 10 2307 1565132 JSTOR 1565132 Stebbins 1995 p 249 a et b en Amphibian Conservation Action Plan sur IUCN consulte le 30 mars 2012 en Panama Amphibian Rescue and Conservation Project Amphibian Ark consulte le 30 mars 2012 Bibliographie en R L Dorit W F Walker et R D Barnes Zoology Saunders College Publishing 1991 1009 p ISBN 978 0 03 030504 7 Losange Amphibiens amp reptiles Paris Editions Artemis coll Decouverte nature 2008 127 p ISBN 978 2 84416 650 0 et 2 84416 650 4 en Ross A Alford dir Stephen J Richards et Keith R McDonald Encyclopedia of Biodiversity 2007 ISBN 978 0 12 226865 6 et 0 12 226865 2 Amphibians Biodiversity of p 1 12 en Robert C Stebbins et Nathan W Cohen A Natural History of Amphibians Princeton University Press 1995 316 p ISBN 978 0 691 03281 8 lire en ligne en Kentwood David Wells The Ecology amp Behavior of Amphibians Chicago University of Chicago Press 2007 1148 p ISBN 978 0 226 89335 8 Claude Miaud et Jean Muratet Les amphibiens de France Guide d identification des œufs et des larves Versailles 93 La Plaine Saint Denis Editions Quae 2018 226 p ISBN 978 2 7592 2664 1 lire en ligne Voir aussiSur les autres projets Wikimedia Amphibia sur Wikimedia CommonsAmphibia sur Wikispeciesamphibien sur le Wiktionnaire Articles connexes Herpetologie Crapaud Grenouille Salamandre Triton Declin des populations d amphibiens Chytridiomycose Liste des genres d amphibiens prehistoriques References taxinomiques fr en ITIS Amphibia consulte le 12 mars 2013 en Catalogue of Life Amphibia consulte le 27 mars 2023 en Fauna Europaea Amphibia consulte le 15 mars 2023 en Animal Diversity Web Amphibia consulte le 12 mars 2013 en NCBI Amphibia taxons inclus consulte le 12 mars 2013 en Tree of Life Web Project Amphibia consulte le 12 mars 2013 Liens externes Site du Declining Amphibian Population Task Force Site de l equipe de protection des Amphibiens Species Survival Commission Amphibiens entre la vie et la mare La Science CQFD France Culture 30 octobre 2023 Bases de donnees et dictionnaires Ressources relatives au vivant Animal Diversity Web Australian Faunal Directory Dyntaxa EPPO Global Database EU nomen Fauna Europaea Paleobiology Database Global Biodiversity Information Facility iNaturalist Interim Register of Marine and Nonmarine Genera Nederlands Soortenregister New Zealand Organisms Register Plazi Systeme d information taxonomique integre World Register of Marine Species ZooBank Ressource relative a la sante Medical Subject Headings Ressource relative a la recherche JSTOR Notices dans des dictionnaires ou encyclopedies generalistes Britannica CALS Encyclopedia of Arkansas Encyclopaedia Iranica L Encyclopedie canadienne Gran Enciclopedia Aragonesa Gran Enciclopedia Catalana Gran Enciclopedia de Navarra Larousse Nationalencyklopedin Maine An Encyclopedia Mississippi Encyclopedia Store norske leksikon Universalis Notices d autorite BnF donnees LCCN GND Japon Israel Tchequie Portail de l herpetologie

Derniers articles
  • Mai 25, 2025

    Mythologies

  • Mai 25, 2025

    Mythologie

  • Mai 25, 2025

    Muséologie

  • Mai 25, 2025

    Muséographie

  • Mai 25, 2025

    Muscomorpha

www.NiNa.Az - Studio

    Entrer en contact
    Langages
    Contactez-nous
    DMCA Sitemap
    © 2019 nina.az - Tous droits réservés.
    Droits d'auteur: Dadash Mammadov
    Un site Web gratuit qui permet le partage de données et de fichiers du monde entier.
    Haut